STAQS Data Product User Guide

Table of Contents

Introduction:	
Citation:	
Campaign Level DOI:	
Campaign Overview:	
Data Products:	
EARTHDATA Search	6
Datasets Outside of EARTHDATA Search	1
Resources:	17
Acronyms:	17

Introduction:

NASA's Synergistic TEMPO Air Quality Science (STAQS) mission aimed to combine Earth observation data from Tropospheric Emissions: Monitoring of Pollution (TEMPO) with traditional air quality monitoring methods. By integrating these approaches, STAQS carefully studied air quality science within the TEMPO viewing area and validated TEMPO data products. STAQS was a multifaceted campaign that included airborne data captured from multiple platforms (including planes, drones, and balloons) and ground site data captured through different types of sensors. STAQS was conducted over the major cities of Chicago, New York, Los Angeles, and Toronto with additional field sites in other locations.

The data from STAQS contained on EARTHDATA Search is in the following formats: NetCDF, HDF5, CDF, and ICARTT. These formats are widely used for scientific data and compatible with various analysis software, such as Python, MATLAB, or GIS tools.

The purpose of this user guide is to contextualize the STAQS mission and give helpful insight into the use and formatting of STAQS data.

Citation:

Cite ASDC Data

DOI Citation Formatter

Campaign Level DOI:

STAQS: 10.5067/SUBORBITAL/STAQS/DATA001

Campaign Overview:

Objectives

The overarching goal of the STAQS campaign was to support the science and validation of data of the TEMPO observations. This was done in a few ways. First, STAQS set out to improve the current understanding of air quality science in the TEMPO viewing area. Next, STAQS took data to directly evaluate TEMPO data Level 2 products. Data from STAQS also served to interpret air quality events tracked by TEMPO and improve estimates of different types of emissions.

Platforms

STAQS collected data in Summer 2023 on different Platforms: manned aircraft, ground sensors, and unmanned aircraft (drones and balloon sondes). The manned aircraft were the major portion of the campaign. Johnson Space Center's Gulfstream-V (G-V) aircraft featured the GeoCAPE Airborne Simulator (GCAS) and combined High Spectral Resolution Lidar-2 (HSRL-2) and Ozone Differential Absorption Lidar (DIAL). This payload provided repeated high-resolution mapping of nitrogen dioxide (NO_2) and formaldehyde (HCHO) from GCAS and ozone (O_3) and aerosols from HSRL-2/DIAL. This mapping occurred up to 3 times per day over targeted cities in the morning, at midday, and in the afternoon.

Meanwhile, NASA Langley Research Center's (LaRC's) Gulfstream-III (G-III) measured city-scale emissions 2 time per day over the targeted cities with the High-Altitude Lidar Observatory (HALO) and Airborne Visible InfraRed Imaging Spectrometer – Next Generation (AVIRIS-NG). HALO measured partial column-averaged methane (CH₄) concentration and aerosol profiles while AVIRIS-NG measured CH₄ and CO₂ column density. Additionally, the G-III also carried the GCAS instrument for the final 4 flight days.

The G-III and G-V aircraft took data over the cities of Los Angeles, Chicago, New York, and Toronto between June and August of 2023. There were 17 flight days and a total of 270 flight hours. See the table below for more specific flight information. Bolded Flights occurred after TEMPO started taking data.

Table 1. Flight dates and locations for manned STAQS flights

Date (2023)	Location	G-III Flight	G-V Flight
June 26	Central Valley, VA	Yes	Yes
June 27	Los Angeles, CA	Yes	Yes
June 28	Los Angeles, CA	Yes	Yes
July 26	New York City, NY	Yes	Yes
July 28	New York City, NY	Yes	Yes
August 1	Chicago, IL	Yes	Yes
August 2	Chicago, IL	Yes	Yes
August 4	Toronto, Canada	Yes	Yes
August 5	New York City, NY	Yes	Yes
August 8	Chicago, IL	Yes	Yes
August 9	New York City, NY	Yes	Yes
August 12	Chicago, IL	Yes	Yes
August 15	Chicago, IL	Yes	Yes
August 22	Los Angeles, CA	Yes*	-
August 23	Los Angeles, CA	Yes*	-
August 25	Los Angeles, CA	Yes*	-
August 26	Los Angeles, CA	Yes*	-

^{*}Indicates a G-III flight that included the GCAS instrument

STAQS also incorporated ground-based tropospheric ozone profiles from the NASA Tropospheric Ozone Lidar Network (TOLNet); NO_2 , HCHO, and O_3 measurements from Pandora spectrometers; and leveraged existing networks operated by the EPA and state air quality agencies.

STAQS was part of a larger collaborative effort, AGES+. AGES+ included all NASA and National Ocean and Atmospheric Administration (NOAA) aircraft-based field activities from summer 2023 and their associated ground data collection efforts. Some additional platforms collected

data in support of STAQS as part of the larger AGES+ collaboration. These included data from the University of Alabama in Huntsville's (UAH) SeaRey aircraft; the University of Wisconsin-Madison's HALO Doppler Lidar; drone data from UAH and the University of Wisconsin-Eau Claire (UWEC); ground-based data taken by UWEC; data from the Inexpensive Network Sensor Technology for Exploring Pollution (INSTEP) network; and a series of Balloon Sondes from UAH, NASA Goddard, and St. Edward's University.

Data Products:

The STAQS campaign plays a significant role in advancing TEMPO's ability to monitor air quality. By leveraging diverse airborne, ground-based, and remotely sensed data, STAQS provides valuable insights for improving emissions estimates, interpreting pollution events, and validating TEMPO data products. This collaboration enriches NASA's air quality research capabilities with long-term benefits for public health and environmental policymaking.

EARTHDATA Search

A majority of data products from the STAQS campaign are archived on EARTHDATA. Table 2 below shows these products with their accompanying table number where more information is detailed about each product. In order to access this data, you can either use the query function on EARTHDATA Search or scroll to the respective table and click on the EARTHDATA button. To download the datasets of your choosing, you will need an EARTHDATA account.

Data Product Table Number G-V GCAS Table 3 G-V HSRL Table 4 G-III GCAS Table 5 G-III HALO Table 6 Table 7 HALO Lidar Doppler Chiwaukee Drone Data from UAH and UWEC Table 8 Kenosha/Lighthouse Ground Data Table 9 **INSTEP** Table 10 Table 11 SeaRay **Balloon Sondes** Table 12 **AVIRIS-NG** Table 13

Table 2. Data Products Available on EARTHDATA Search

These datasets feature a combination of the following file formats:

- Hierarchical Data Format 5 (HDF5)
- Network Common Data Form (NetCDF)
- Common Data Form (CDF)
- ICARTT (International Consortium for Atmospheric Research on Transport and Transformation)

To view these datasets, you will need the appropriate viewer. HDF5, NetCDF, CDF can all be viewed in NASA's Panoply or other HDF Viewers such as HDFView. ICARTT data is a common text-based data format that allows for uniform standardization of data; thus it can be opened with any text reader. Once you download a data file, a "README" file may be available that gives you details on how to open, read, and use it.

Collection: STAQS_AircraftRemoteSensing_JSC-GV_GCAS_Data_1

EARTHDATA

DOI: 10.5067/ASDC/SUBORBITAL/STAQS/DATA001/GV/AircraftRemoteSensing/GCAS_1

Platform: NASA Gulfstream V

Dates: June 26 – August 15, 2023

Data ID	Key Variables	File Format	Instrument	Sampling	Principal	Institution
				Frequency	Investigator	
staqs-GCAS-	HCHO Column Density	NetCDF	GeoCAPE Airborne	Up to 12	Scott Janz	NASA
НСНО			Simulator (GCAS)	Hz		Goddard
staqs-GCAS-	NO ₂ Column Density	NetCDF	GeoCAPE Airborne	Up to 12	Scott Janz	NASA
NO2			Simulator (GCAS)	Hz		Goddard

Table: 4

Collection: STAQS_AircraftRemoteSensing_JSC-GV_HSRL2_Data_1

EARTHDATA

DOI: 10.5067/ASDC/SUBORBITAL/STAQS/DATA001/GV/AircraftRemoteSensing/HSRL2_1

Platform: NASA Gulfstream V

Dates: June 24 – August 15, 2023

Data ID	Key Variables	File Format	Instrument	Sampling	Principal	Institution
				Frequency	Investigator	
staqs-HSRL2	532 nm backscatter, 1064 nm backscatter, 532 nm aerosol optical depth, cloud top height	HDF5	High Spectral Resolution Lidar-2	0.1 Hz	Jonathan Hair and Taylor Shingler	NASA Langley
staqs- HSRL2- NearSurface	532 nm backscatter, 1064 nm backscatter, 532 nm aerosol optical depth	HDF5	High Spectral Resolution Lidar-2	0.1 Hz	Jonathan Hair and Taylor Shingler	NASA Langley

staqs-	Images of Lidar profile plots	Zipped Folder of	High Spectral	0.1 Hz	Jonathan Hair	NASA
HSRL2-	of each Lidar variable for	PNGs for Each	Resolution Lidar-2		and Taylor	Langley
images	each day of flight	Day			Shingler	

Collection: STAQS_AircraftRemoteSensing_NASA-G3_GCAS_Data_1

EARTHDATA

DOI: 10.5067/ASDC/SUBORBITAL/STAQS/DATA001/G3/AircraftRemoteSensing/GCAS_1

Platform: NASA Gulfstream III

Dates: August 22 – August 26, 2023

Data ID	Key Variables	File Format	Instrument	Sampling	Principal	Institution
				Frequency	Investigator	
staqs-GCAS-	HCHO Column Density	NetCDF	GeoCAPE Airborne	Up to 12 Hz	Scott Janz	NASA
НСНО			Simulator (GCAS)			Goddard
staqs-GCAS-	NO ₂ Column Density	NetCDF	GeoCAPE Airborne	Up to 12 Hz	Scott Janz	NASA
NO2			Simulator (GCAS)			Goddard

Table: 6

Collection: STAQS_AircraftRemoteSensing_NASA-G3_HALO_Data_1

EARTHDATA

DOI: 10.5067/ASDC/SUBORBITAL/STAQS/DATA001/G3/AircraftRemoteSensing/HALO_1

Platform: NASA Gulfstream III

Dates: June 26 – August 15, 2023

Data ID	Key Variables	File Format	Instrument	Sampling Frequency	Principal Investigator	Institution
staqs-HALO	532 nm backscatter, 1064 nm backscatter, 532 nm aerosol optical depth, cloud top height	HDF5	High-Altitude Lidar Observatory	Up to 2 Hz	Amin Nehrir	NASA Langley

staqs-HALO- XCH4	Partial column averaged CH ₄ dry air mole fraction	HDF5	High-Altitude Lidar Observatory	Up to 2 Hz	Amin Nehrir	NASA Langley
staqs-HALO- images	Images of Lidar profile plots of each Lidar variable	Zipped Folder of PNGs for Each Day	High-Altitude Lidar Observatory	Up to 2 Hz	Amin Nehrir	NASA Langley

Collection: STAQS_Chiwaukee-Prairie_Data_1

DOI: 10.5067/ASDC/SUBORBITAL/STAQS/DATA001/Chiwaukee-Prairie_1

Platform: Chiwaukee Prairie Field Site

Dates: May 10 – September 11, 2023

Data ID	Key Variables	File Format	Instrument	Sampling Frequency	Principal Investigator	Institution
atana hala wad	I I a wiss a set of NA/i se of	Camara an Data	Hala Davadan Lidan	<u> </u>	 	11
staqs-halo-vad	Horizontal Wind	Common Data	Halo Doppler Lidar	0.0033 Hz	Tim Wagner	University of
	Vector	Format				Wisconsin -
						Madison
staqs-halo-stare	Backscatter,	Common Data	Halo Doppler Lidar	0.05 Hz	Tim Wagner	University of
	Vertical Velocity	Format				Wisconsin -
						Madison

DOI:

Collection: STAQS_Drone_Data_1

10.5067/ASDC/SUBORBITAL/STAQS/DATA001/Drone_1

Platform: Uncrewed Aircraft Systems (UAS)

Dates: August 1 – August 17, 2023

- 4100.	Magast I Magast	17, 2020				
Data ID	Key Variables	File Format	Instrument	Sampling	Principal	Institution
				Frequency	Investigator	
staqs-O3-	O ₃ , PM _{2.5} , VOC	ICARTT	2B Model 205; Plantower	1 Hz	Mike	University of
PM25-MET	(experimental)		PMS5003; BME680		Newchurch	Alabama-
						Huntsville
staqs-UWEC-	Wind Direction,	ICARTT	Winds were derived from flight	0.2 Hz	Patti Cleary	University of
UAS-Wind	Wind Speed		controller data through			Wisconsin-
			AirData.com			Eau Claire
staqs-UWEC-	O _{3,}	ICARTT	2B Tech Personal Ozone	0.1 Hz	Patti Cleary	University of
UAS	Meteorological		Monitor; Two separate iMET-			Wisconsin-
	Parameters		XQ2 from Intermet Systems; DJI			Eau Claire
			flight controller records			

Table: 9

Collection: STAQS_Ground_Data_1

DOI: 10.5067/ASDC/SUBORBITAL/STAQS/DATA001/Ground_1 **Platform:** Ground-based instrumentation, Kenosha, Wisconsin

Dates: July 1 – August 31, 2023

Data ID	Key Variables	File Format	Instrument	Sampling	Principal	Institution
				Frequency	Investigator	
staqs-Ground-	SO ₂ , NO ₂ , O ₃ ,	ICARTT	Differential Optical Absorption	0.0033 Hz	Patti Cleary	University of
Kenosha-	НСНО		Spectrometer (DOAS); light			Wisconsin-Eau
DOAS			emitted at Kenosha Municipal			Claire
			Building; receiver and analyzer			

EARTHDATA

			at Kenosha Water Treatment			
			Facility			
staqs-Ground-	Meteorological	ICARTT	NOAA Meteorological Station	0.0017 Hz	Patti Cleary	University of
Kenosha-	Parameters		at Kenosha Harbor Lighthouse			Wisconsin-Eau
KNSW3			Station KNSW3			Claire

DOI:

Platform:

Collection: STAQS_INSTEP_Data_1

10.5067/ASDC/SUBORBITAL/STAQS/DATA001/INSTEP_1
Inexpensive Network Sensor Technology Exploring Pollution

Dates: June 7, 2023

Data ID	Key Variables	File	Instrument	Sampling	Principal	Institution
		Format		Frequency	Investigator	
staqs-Whittier-	CH ₄ , HCHO,	ICARTT	INSTEP Sensor located at Whittier	0.017 Hz	Kristen Okorn	NASA Ames
CH4-CH2O-O3-CO2	O ₃ , CO ₂		College			
staqs-TMF-CH4-	CH₄, HCHO,	ICARTT	INSTEP Sensor located at NASA	0.017 Hz	Kristen Okorn	NASA Ames
CH2O-O3-CO2	O ₃ , CO ₂		JPL's Table Mountain Facility			
staqs-Redlands-	CH₄, HCHO,	ICARTT	INSTEP Sensor located in	0.017 Hz	Kristen Okorn	NASA Ames
CH4-CH2O-O3-CO2	O ₃ , CO ₂		Redlands, CA			
staqs-Caltech-CH4-	CH ₄ , HCHO,	ICARTT	INSTEP Sensor located at the 0.017 H		Kristen Okorn	NASA Ames
CH2O-O3-CO2	O ₃ , CO ₂		California Institute of Technology			
staqs-AFRC-CH4-	CH ₄ , HCHO,	ICARTT	INSTEP Sensor located at NASA 0.01		Kristen Okorn	NASA Ames
CH2O-O3-CO2	O ₃ , CO ₂		Armstrong Flight Research Center			

Table: 11

Collection: STAQS_SeaRey_Data_1

DOI: 10.5067/ASDC/SUBORBITAL/STAQS/DATA001/SeaRey_1

Platform: Progressive Aerodyne SeaRey

Dates: July 18 – August 18, 2023

EARTHDATA

Data ID	Key Variables	File	Instrument	Sampling	Principal	Institution
		Format		Frequency	Investigator	
STAQS-O3-NO2-PM25-	Meteorological	ICARTT	2B Model 205, NOAA CSL	1 Hz	Mike Newchurch	University of
MET_SEAREY	Parameters,		mACES, Plantower			Alabama in
	O ₃ , NO ₂ , PM _{2.5}		PMS5003, BME688			Huntsville

Collection: STAQS_Sondes_Data_1

DOI: 10.5067/ASDC/SUBORBITAL/STAQS/DATA001/Sondes_1

Platform: Windsonde Balloons and Ozonesondes

Dates: May 26 – October 20, 2023

Data ID Key Variables		File	Instrument	Sampling	Principal	Institution
		Format		Frequency	Investigator	
staqs-ChiwaukeePrairie_	Meteorological	ICARTT	Windsonde Balloons	Varies	Todd	University
SONDEwindsonde	Parameters				McKinney	of Alabama
						in Huntsville
staqs-	O ₃ ,	ICARTT	radiosonde = iMet	Varies	Todd	University
ChiwaukeePrairie_SONDE	Meteorological		Radiosonde, ozonesonde =		McKinney	of Alabama
ozonesonde	Parameters		2Z41162 En-Sci ozonesonde,			in Huntsville
			1% KI with 1/10th buffer			
			solutions with NOAA Average			
			(Johnson et al. 2002) pump			
			corrections			
staqs-FlaxPond	O ₃ ,	ICARTT	Ozonesondes -	Varies	John Sullivan	NASA
	Meteorological		Electrochemical Concentration			Goddard
	Parameters		Cell (En-Sci), iMet-4 RSB			
			Radiosondes			
staqs-Austin	O ₃ ,	ICARTT	Ozonesondes -	Varies	Paul Walter	St. Edward's
	Meteorological		Electrochemical Concentration			University
	Parameters					

			Cell (En-Sci), iMet-4 RSB Radiosondes			
staqs-ElPaso	O ₃ , Meteorological Parameters	ICARTT	Ozonesondes - Electrochemical Concentration Cell (En-Sci), iMet-4 RSB Radiosondes	Varies	Paul Walter	St. Edward's University
staqs-Houston	O ₃ , Meteorological Parameters	ICARTT	Ozonesondes - Electrochemical Concentration Cell (En-Sci), iMet-4 RSB Radiosondes	Varies	Paul Walter	St. Edward's University
staqs-HoustonGBay	O ₃ , Meteorological Parameters	ICARTT	Ozonesondes - Electrochemical Concentration Cell (En-Sci), iMet-4 RSB Radiosondes	Varies	Paul Walter	St. Edward's University
staqs-HoustonGulf	O ₃ , Meteorological Parameters	ICARTT	Ozonesondes - Electrochemical Concentration Cell (En-Sci), iMet-4 RSB Radiosondes	Varies	Paul Walter	St. Edward's University
staqs-SanAntonio	O ₃ , Meteorological Parameters	ICARTT	Ozonesondes - Electrochemical Concentration Cell (En-Sci), iMet-4 RSB Radiosondes	Varies	Paul Walter	St. Edward's University
staqs-Westport	O ₃ , Meteorological Parameters	ICARTT	Ozonesondes - Electrochemical Concentration Cell (En-Sci), iMet-4 RSB Radiosondes	Varies	Paul Walter	St. Edward's University
staqs-YaleCoastal	O ₃ , Meteorological Parameters	ICARTT	Ozonesondes - Electrochemical Concentration Cell (En-Sci), iMet-4 RSB Radiosondes	Varies	Paul Walter	St. Edward's University

AVIRIS-NG

Unlike previous the data from the previous tables which are hosted by the ASDC, AVIRIS-NG data is hosted by Oak Ridge National Laboratories Distributed Active Archive Center (ORNL DAAC). For more information on AVIRIS-NG, find the <u>AVIRIS-NG user guide on this page</u>.

Table: 13

Collection: STAQS AVIRIS-NG-derived Methane and Carbon Dioxide Plumes, 2023

EARTHDATA

DOI: 10.3334/ORNLDAAC/2406

Platform: Gulfstream III

Dates: July 18 – August 18, 2023

34.1 10 7.46 dost 10, 2020							
Data ID	Key Variables	File Format	Instrument	Sampling	Principal	Institution	
				Frequency	Investigator		
AVIRIS-	CH ₄ , CO ₂	TIF	AVIRIS-NG	1 Hz	Robert Green,	NASA JPL	
NG_CH4_CO2_PI					Daniel Jensen,		
umes					Holly Bender,		
					Andrew Thorpe		

Datasets Outside of EARTHDATA Search *TOLNet*

TOLNet is a network of permanent and mobile ground-based lidar instruments that focus on identifying ozone. For the STAQS mission, one TOLNet sensor took readings in Chicago, four sensors took data in New York City, and three took data in Los Angeles. Table 12 shows which TOLNet sensors took part in the STAQS campaign. Note that some lidars are permanent while others are mobile. For instance, the RO3QET lidar was moved from Huntsville, AL to Kenosha, WI to take data near the Chicago flights.

Table 14. TOLNet Lidars that took part in the STAQS mission

Lidar	Location for	Dates	Links to ASDC
Name	STAQS		Collections
CCNY Lidar	New York, NY	June 29, 2023 – August 31,	CCNY TOLNet
		2023	Collection at the ASDC
NASA GSFC	Oldfield, NY	July 12, 2023 – August 16,	TROPOZ TOLNet
TROPOZ		2023	Collection at the ASDC
Lidar			
NASA JPL	Table Mountain,	JPL TMF: August 22, 2023 –	JPL TOLNet Collection
SMOL	CA; JPL/Pasadena,	August 27, 2023	at the ASDC
Lidars	CA;	JPL SMOL-1 (Pasadena): June	
	San Bernardino/Cal	25, 2023 – September 7,	
	State, CA	2023*	
		JPL SMOL-1 (San Bernardino):	
		June 23, 2023 – September 1,	
		2023*	
NASA LaRC	Sherwood Island, CT	July 17, 2023 – August 26,	<u>LMOL TOLNet</u>
LMOL Lidar		2023	Collection at the ASDC
NOAA CSL	Yale Coastal Field	July 4, 2023 – August 14, 2023	TOPAZ TOLNet
TOPAZ	Site, Guildford, CT		Collection at the ASDC
Lidar			
UAH	Kenosha, WI	July 18, 2023 – August 16,	RO3QET TOLNet
RO3QET		2023	Collection at the ASDC
Lidar			

^{*}Indicates data is not available for each date in date range

While TOLNet data are not included with broader STAQS collections on EARTHDATA Search, they are still archived by the ASDC. There are two locations you can find TOLNet data. First is the download section of the TOLNet website: https://tolnet.larc.nasa.gov/download. Here you can query data by date, location, sensor, and parameter. Using the graph icon at the top corner of each file, you can preview the data contained in the file. TOLNet files are in HDF format, so they will require an HDF viewer in order to view them. The other location is on the ASDC

website: https://asdc.larc.nasa.gov/project/TOLNet . To download from either the TOLNet website or the ASDC website, you will need to have an EARTHDATA login.

PANDORA

Pandora Spectrometers are a part of the Pandonia Global Network, which sets consistent low-cost sensors across the globe to validate pollution-monitoring satellites in low Earth orbit. What sets these sensors apart is that they are able to measure total column profiles of HCHO, NO₂, and O₃ of the whole atmosphere from the ground. For the STAQS mission, multiple spectrometers collected data at each location. Specifically, two were used in Chicago, six were used in Toronto, nine were used in New York City, and two were used in Los Angeles.

Data for Pandora is hosted at https://data.hetzner.pandonia-global-network.org/. On this site, you will choose the city for data you wish to download. In each city folder there will be a set of folders to each processing level of data. The folders labelled "L2_geoms/" contain HDF5files (*.H5 file extension) for each trace gas which can be visualized, and these specific data is governed by the Generic Earth Observation Metadata Standard (GEOMS) format. The other folders contain .txt files with readings on separate columns. Note that each .txt file contains a key for each column's parameter in the file itself. The .txt files may contain all measured gases or just one of them. For more information about GEOMS, visit its website here: https://evdc.esa.int/documentation/geoms/. For more information about the Pandora project as a whole visit its website here: https://pandora.gsfc.nasa.gov/.

Resources:

STAQS Landing Page

TEMPO Landing Page

STAQS Micro Article

ICARTT File Format

TEMPO/STAQS StoryMap

Acronyms:

Short Name Long Name

AVIRIS-NG Airborne Visible InfraRed Imaging Spectrometer – Next Generation

CDF Common Data Format

CH₄ Methane

DIAL Ozone Differential Absorption Lidar

GCAS GeoCAPE Airborne Simulator

G-III NASA Langley's Gulfstream-III Aircraft
NASA Langley's Gulfstream-V Aircraft
HALO High-Altitude Lidar Observatory

HCHO Formaldehyde

HDF5 Hierarchical Data Format 5HSRL-2 High Spectral Resolution Lidar-2

ICARTT International Consortium for Atmospheric Research on Transport and

Transformation

NO₂ Nitrogen Dioxide

O₃ Ozone

PM_{2.5} Particulate Matter with a dimeter of less than 2.5 micrometers

SO₂ Sulfur Dioxide

STAQS Synergistic TEMPO Air Quality Science

TEMPO Tropospheric Emissions: Monitoring of Pollution

UAHUniversity of Alabama in HuntsvilleUWECUniversity of Wisconsin – Eau Claire

VOC Volatile Organic Compound