
GISS'S MODELING EFFORTS TO BETTER UNDERSTAND CLOUD TRANSITIONS IN COLD AIR OUTBREAKS

Florian Tornow, Andrew S. Ackerman, Ann M. Fridlind, Brian Cairns, George Tselioudis NASA GISS & Columbia University - presenting at the ACTIVATE Data Workshop 2021 October 21st, 2021

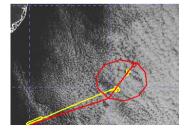
GISS - MODELING CONCEPT FOR COLD AIR OUTBREAKS

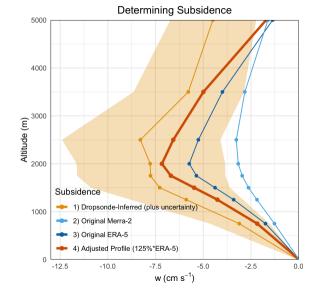
MODIS Aqua imagery of a 2008 cold air outbreak in the NW Atlantic (left), selected $(0.5^\circ)^2$ regions (bottom), and quasi-Lagrangian trajectories generated from MERRA-2 (right)

General Focus

- improve cloud-aerosol-radiation interactions connected to cold air outbreaks (CAOs) in ModelE3 (latest gen. GISS climate model)
- ► follow a bottom-up roadmap:
 - 1) use ACTIVATE in-situ and remote-sensing observations
 - understand factors controlling the observed cases and their evolution using large-eddy simulations (LES)
 - 3) evaluate column physics of ModelE3 using its single-column model (SCM) version

A QUASI-LAGRANGIAN FRAMEWORK

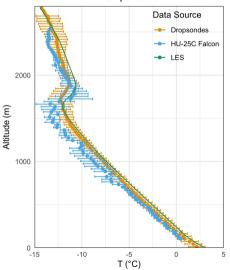

- CAOs with rapid advection, covering distances O(10³ km) from cloud formation to cloud dissipation
- instead of simulating the entire area, we use a domain O(10¹-10² km) moving with the boundary layer flow



MARCH 1ST 2020: LES SETUP GUIDED BY OBSERVATIONS

Notes

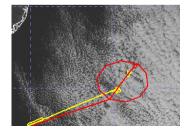
► dropsondes used to infer subsidence also helped constrain inversion → adjusted reanalysis

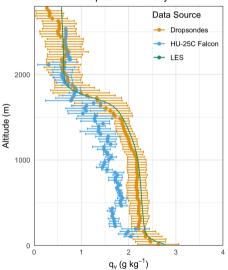


March 1st 2020: LES Setup guided by observations

Notes

- ▶ dropsondes used to infer subsidence also helped constrain inversion
 → adjusted reanalysis
- realistic BL and FT vertical structure in simulations (3h after start)

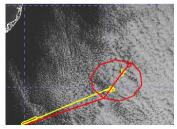


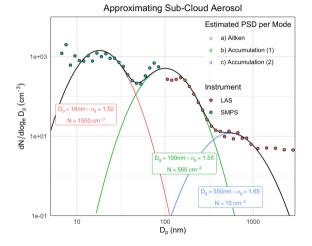

Temperature

March 1st 2020: LES Setup guided by observations

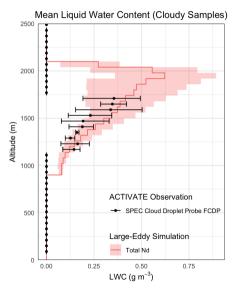
Notes

- ▶ dropsondes used to infer subsidence also helped constrain inversion
 → adjusted reanalysis
- realistic BL and FT vertical structure in simulations (3h after start)

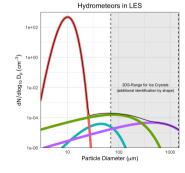

Specific Humidity



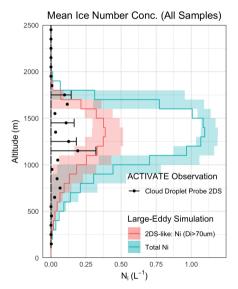
MARCH 1ST 2020: LES SETUP GUIDED BY OBSERVATIONS


Notes

- ▶ dropsondes used to infer subsidence also helped constrain inversion
 → adjusted reanalysis
- realistic BL and FT vertical structure in simulations (3h after start)
- high concentrations of below-cloud CCN and presence of large coarse mode particles (>1.5 μm)

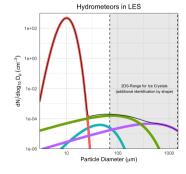

FINDINGS

 matching LWC profiles, with conditional sampling artifact (above 1750m)

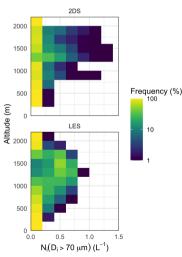


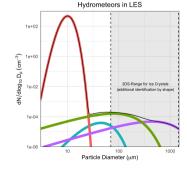
FINDINGS

 matching LWC profiles, with conditional sampling artifact (above 1750m)

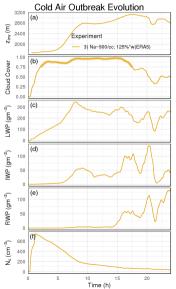


FINDINGS


- matching LWC profiles, with conditional sampling artifact (above 1750m)
- important to mimic 2DS sampling

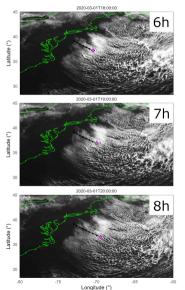

Type
 Cloud Droplets
 Cloud Ice
 Rain
 Snow

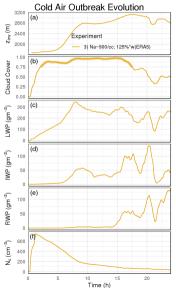
Chance of N_i (All Samples)



- matching LWC profiles, with conditional sampling artifact (above 1750m)
- important to mimic 2DS sampling
- overly simplified ice formation results in less variability in N_i than observed

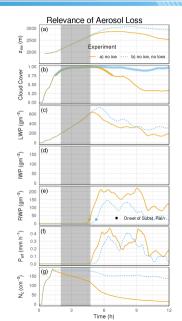
MARCH 1ST 2020: REALISTIC CLOUD BREAKUP

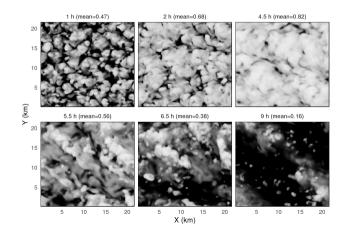

- highest albedo after
 7-8 h
- in good agreement with GOES16 imagery

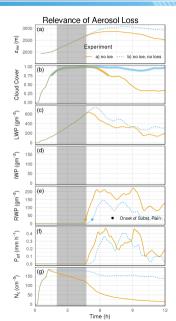


MARCH 1ST 2020: REALISTIC CLOUD BREAKUP

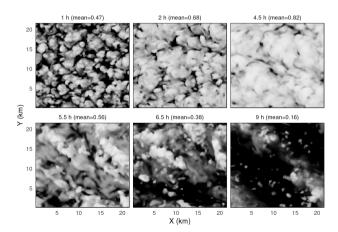
- highest albedo after 7-8 h
- in good agreement with GOES16 imagery

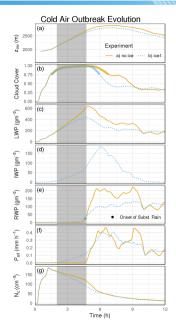


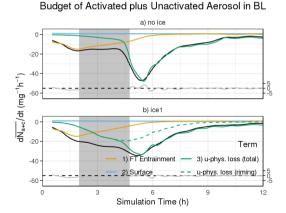

FINDINGS

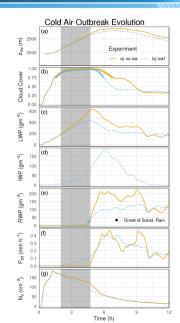

CCN loss is integral part of the transition

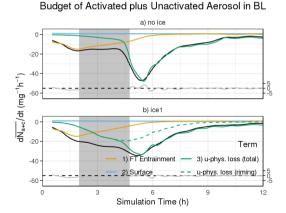
FINDINGS

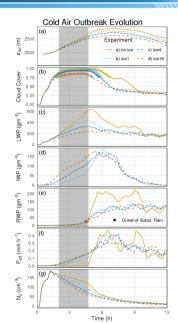

CCN loss is integral part of the transition




- CCN loss is integral part of the transition
- frozen hydrometeors hastens the closed-to-broken cloud transition

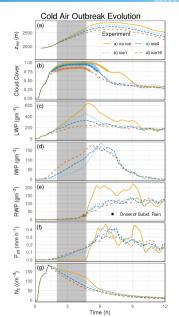



- CCN loss is integral part of the transition
- frozen hydrometeors hastens the closed-to-broken cloud transition



- CCN loss is integral part of the transition
- frozen hydrometeors hastens the closed-to-broken cloud transition

FINDINGS


- CCN loss is integral part of the transition
- frozen hydrometeors hastens the closed-to-broken cloud transition

Role of Riming (Tornow et al., ACP, 2021)

- frozen hydrometeors affect CAO transition primarily through riming-related processes
 - (1) frozen hydrometeors reduce LWP
 - (2) more rapid N_c reduction
 - (3) earlier precipitation of riming-grown crystals and cooling-moistening of sub-cloud layer
- acting prior to rain onset, we describe the combination as preconditioning by riming

DISCUSSION

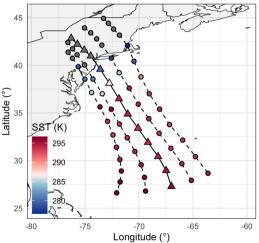
- this mechanism should comprise another negative cloud feedback in a warming climate
- ACTIVATE has the potential to observationally assess riming through in-situ observations

Supplementary Material

LES AND SCM IN A LAGRANGIAN FRAMEWORK

GENERAL SETUP

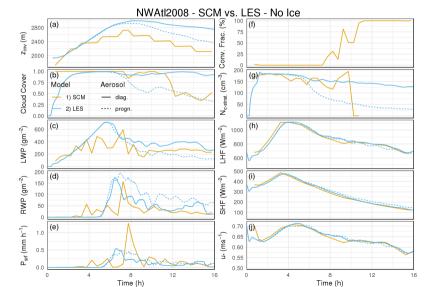
- similar to de Roode et al. (2019) and as motivated by Pithan et al. (2018) use quasi-Lagrangian domain
- nudging ($\tau = 1$ h):
 - imposing $w_{sub}(z, t)$
 - $\langle T
 angle(z,t)$ and $\langle q_{v}
 angle(z,t)$ in FT
 - $\langle u
 angle(z,t)$ and $\langle v
 angle(z,t)$ above 500m
- diagnostic immersion N_{inp} (Ovchinnikov et al., 2014)


DHARMA LARGE-EDDY SIMULATIONS

- mixed-phase 2-moment microphysics (following Morrison et al., 2009)
- diagnostic or prognostic aerosol (1-moment)

SINGLE COLUMN MODEL OF NASA'S MODELE3

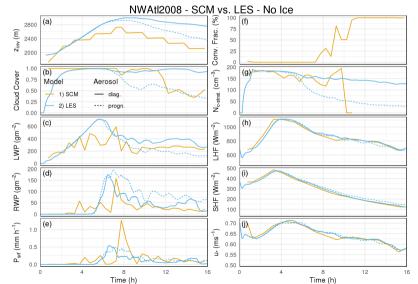
- Bretherton and Park (2009) PBL scheme
- 2-moment cloud microphysics (following Gettelman and Morrison, 2015)
- diagnostic aerosol (near-future prognostic)


MERRA2-based Trajectory

NOTE:

- (1) SCM utilizes LES surface fluxes to avoid initially found flux discrepancies (!)
- (2) for intercomparison, SCM and LES with simplified radiation using Beer's law

9



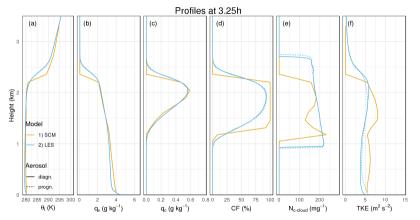
Note:

- (1) SCM utilizes LES surface fluxes to avoid initially found flux discrepancies (!)
- (2) for intercomparison, SCM and LES with simplified radiation using Beer's law

SCM vs. LES

- agreement better than expected
- earlier rain formation
- shallower MBL and smaller peak LWP
- cloud breakup represented as transition to convective scheme

9

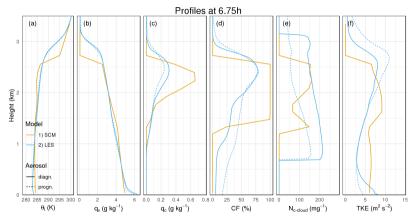


NOTE:

- (1) SCM utilizes LES surface fluxes to avoid initially found flux discrepancies (!)
- (2) for intercomparison, SCM and LES with simplified radiation using Beer's law

SCM vs. LES

- agreement better than expected
- earlier rain formation
- shallower MBL and smaller peak LWP
- cloud breakup represented as transition to convective scheme



NOTE:

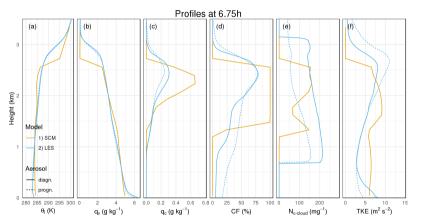
- (1) SCM utilizes LES surface fluxes to avoid initially found flux discrepancies (!)
- (2) for intercomparison, SCM and LES with simplified radiation using Beer's law

SCM vs. LES

- agreement better than expected
- earlier rain formation
- shallower MBL and smaller peak LWP
- cloud breakup represented as transition to convective scheme

COMPARISON WITH MODELE3'S SCM

NOTE:


- (1) SCM utilizes LES surface fluxes to avoid initially found flux discrepancies (!)
- (2) for intercomparison, SCM and LES with simplified radiation using Beer's law

SCM vs. LES

- agreement better than expected
- earlier rain formation
- shallower MBL and smaller peak LWP
- cloud breakup represented as transition to convective scheme

NEXT STEPS

- remove crutches:
 - reconcile differences in surface fluxes
- prognostic aerosol in SCM
- sensitivity to warm and cold precip. formation

