

How do you compute the 3-D winds????

The ambient wind speed components are computed as the difference between two vectors:

- Velocity of the aircraft with respect to the Earth (inertial)
- Velocity of the air with respect to the aircraft (differential pressures & static P&T)

Important Notes:

- These tend to be an order of magnitude higher than the resulting air speed (either horizontal or vertical)
- True Airspeed (U_a) is a function of the Mach Number and the total air temperature
- Mach Number is a function of static and impact pressure and is subject to how well the static pressure is calibrated

So at its most basic level its just geometry ...

Measurements Overview

Temperature sensor (used to determine ambient air temperature and aircraft speed)

Pressure transducers to provide static and dynamic pressure with minimal impact of flow distortion around the aircraft 5-hole pressure port system to provide
 Angle of Attack – difference between the centerline of the aircraft and the on coming wind direction
 Sideslip Angle – difference between aircraft heading and track angle
 Reference pressure

INTERNAL COMPONENTS:

- A real-time data system from UEI is used
- An Applanix 610 is used for the Inertial data (better accuracy and precision especially for Vertical Platform velocities)
- The data is collected and an IWG1 data string is broadcast to the other computers in the aircraft and to the ground.
- A time server provides a common time base
- Data is downlinked to the ground to check instrument health during flight.

Real time Data System

New Data System

- Manufactured by UEI (ueidaq.com)
- Linux Based
- Real-time
- Rugged 50g shock, 3 g vibration
- Small (4" x 4" x 4")
- Runs at powerup
- 24-bit 16 channel analog card (with separate timers on each channel)
- 8 channel ARINC-429 card (all receive) with independent timestamps for each incoming sample
- More than 60 data streams are individually sampled at > 100 Hz
- Entire setup takes up about ½ of a single bay rack
- Other components include:
 - Analog / ARINC-429 breakout box
 - 5 channel Ethernet switch
 - Applanix 610
 - UPS
- Data is broadcast over Ethernet to be monitored remotely

Full vertical winds Equation (from Lenschow, 1986)

w = Wp - Ua/D *(t1c - tan(beta) * t2c - tan(alpha)*t3c) + L*t4c

Measurements Needed (and source)

*** Data Recorded at at least 100 Hz ***

- Wp = Aircraft vertical velocity
- Ua = True Airspeed
- Alpha & Beta
- $D = sqrt(1 + tan^2(alpha) + tan^2(beta))$
- T1c = sin(Pitch)
- T2c = cos(Pitch) * sin(Roll)
- T3c = cos(Pitch) * cos(Roll)
- T4c = dPitch * sin(Pitch)

L = separation distance (m)

(from Applanix)

(fn Pressure and Temperature)

(AOA and sideslip differential pressures)

(differential pressures)

(from Applanix)

(from Applanix)

(from Applanix)

(from Applanix)

(pressure port to transducer)

Current Data Summary and Archive Status

Summary of Measurements

- First year data collected with a PC-based LabWindows system
- Post year-1 we switched the real time data system
- System was responsible for our data collection as well as the KT-19 (surface IR temp) and for collecting and broadcasting an IWG1 file to the other computers on the Falcon and on the ground
- Minimal data loss due to acquisition issues (part of flight early with the RT system there was a hiccup)
- Primary issues leading to data loss was icing messing with the TAT or dP ports

Where are we as of today...

- Data for all 3 campaigns are in the archive and are final
- I have gone back and made the files consistent from year to year for simplicity
- Two data files are in the archive
 - 1-s Summary Files: Aircraft position and attitude, Pressure, Temperature,, and horizontal winds
 - 20-hz Winds Files: Aircraft position and attitude, 3-D winds, pressure, temperature and surface temp
- *Note*: for moisture data, use DLH not dew point (hence why its not in my archive files)
- Data is in ICARTT format, so text
- Winds are filtered to remove non-SL data. Undoubtably some made it but most are out. There are artifacts introduced for non-SL wind data and caution needs to be used. If you want to use it email me and we can discuss

Current Uses of the Data

Papers

JGR Atmospheres

Research Article 🖹 Full Access

Aircraft Observations of Turbulence in Cloudy and Cloud-Free Boundary Layers Over the Western North Atlantic Ocean From ACTIVATE and Implications for the Earth System Model Evaluation and Development

Michael A. Brunke . Lauren Cutler, Rodrigo Delgado Urzua, Andrea F. Corral, Ewan Crosbie, Johnathan Hair, Chris Hostetler, Simon Kirschler, Vincent Larson, Xiang-Yu Li ... See all authors

First published: 15 September 2022 | https://doi.org/10.1029/2022JD036480

And Posters ...

The Validation of Airborne High Spectral Resolution Lidar 2 (HSRL-2) Retrievals for the Estimation of Ocean Surface Wind Speeds

Sanja Dmitrovic¹, Johnathan W. Hair², Richard Ferrare², Marta A. Fenn², Chris A. Hostetler², Kenneth Lee Thornhill^{2,3}, Claire Robinson², Xubin Zeng⁴, John A. Reagan⁵, Armin Sorooshian^{1,4,6}

¹University of Arizona, James C. Wyant College of Optical Sciences, Tucson, AZ, United States, ²NASA Langley Research Center, Hampton, VA, United States, ³Science Systems and Applications, Inc., Lanham, MD, United States, ⁴University of Arizona, Department of Hydrology and Atmospheric Sciences, Tucson, AZ, United States, ⁵Department of Electrical and Computer Engineering, University of Arizona, Tucson, AZ, United States, ⁶University of Arizona, Department of Chemical and Environmental Engineering, Tucson, AZ, United States