

Atmospheric Process and Global Modeling and Evaluation Using ACTIVATE Data

PNNLTeam:

Hailong Wang, Jingyi Chen, Xiang-Yu Li, and Shuaiqi Tang

Matt Christensen, Bill Gustafson, Fan Mei, Mingxuan Wu, Heng Xiao, Zihua Zhu, and many other ACTIVATE project team members

Outline/Objectives

- To provide process insights and quantify N_a -CCN- N_c relationships under different meteorological conditions with observational constraints from the measurements
 - WRF Large-Eddy Simulation (LES)
 - WRF Cloud-Resolving Modeling (CRM)
- To evaluate/improve the representation of ACI processes in ESMs
 - Diagnostic package for regional/global models
 - Sing-column E3SM simulation
 - Global model simulation

(Sorooshian et al., 2019)

WRF Large-Eddy Simulations (LES) for understanding AMCI in cold air outbreaks and summer precipitating clouds

Idealized-case WRF-LES:

- Domain: 60x60 km² with periodic boundary conditions
- Resolution: 300 m and 100 m, 152 layers (up to 7 km)
- Meteorological profiles, advective forgings and surface fluxes from ACTIVATE and/or ERA5
- N_{a.} N_c and other measurements from ACTIVATE and satellite

Susceptibility

Case	$\Delta \ln \overline{\text{LWP}} / \Delta \ln \overline{\langle N_c \rangle}$	$-\Delta \ln \overline{\langle r_{ m eff} \rangle} / \Delta \ln \overline{\langle N_c \rangle}$	$\Delta \ln \overline{\tau_{\rm c}} / \Delta \ln \overline{\langle N_c \rangle}$
28 February	0.150	0.269	0.419
1 March	-0.002	0.318	0.316

Science objectives:

- Quantify sensitivities of CAO clouds and MBL structures to large-scale forcings (Li et al., 2022)
- Study AMCI in CAO clouds (Li et al., revised)
- Study AMCI in summer precipitating clouds (Li et al., in prep; poster)

WRF-LES study of summer precipitating cumulus cases

- Simulated four summer precipitating cases:
 - June 2, 2021 (example)
 - June 7, 2021
 - o June 10, 2022
 - June 14, 2022
- More challenging for LES to capture the measured clouds (i.e., depth and evolution)
 - Forcing conditions
 - Spatial variability (e.g., large spread in obs)

(Li et al., in prep; Poster)

WRF Cloud Resolving Model (CRM) study of organized mesoscale convective cloud structures during cold air outbreaks (CAO)

Nested-domain WRF-CRM:

- Domain: 1650x1650 km², 450x450 km²
- Resolution: 3 km, 1 km
- Vertical: 150 layers up to 16 km; 130 layers in the lower 6 km
- Realistic boundary conditions and SST (ERA5, FNL)

Science questions to answer:

- What are the meteorological factors that determine the CAO cloud morphology and control the roll-to-cell transition? (Chen et al., 2022)
- What is the role of cloud top entrainment and mixing? (Chen et al., in prep; poster)
- What are the roles of aerosols and cloud microphysics? (Future work)

Dropsondes released during 15-16UTC

(Chen et al., 2022)

WRF-CRM study of organized mesoscale convective cloud structures: during CAO: Role of Cloud Top Entrainment (Chen et al., in prep; Poster)

- WRF-CRM simulations shows distinct transitions between clear, cloud rolls, and broken cumulus
- Band structures in the roll-to-cell transition indicate a shift to a stronger mixing (more convective state) of the MBL, a less important role of the surface fluxes, and a more important role of FT entrainment
- Comparison of WRF-CRM results and ACTIVATE aircraft measurements of air parcel properties (invite contributions)

Height (km)

Mass flux in $\theta_{\rm e}$ -height space showing the evolution with MBL, temperature, and cloud structures

Six zone of the WRF domain based on the surface types and cloud patterns

Preliminary evaluation of clouds in climate models

- With the same grid-scale model states and forcing, ERA5 and MERRA-2 can capture the evolution of cloud fraction and LWC during a CAO case, as simulated in LES
- Magnitude and vertical structure are different from LES results
- Issues with model physics, resolution or both?

ACTIVATE

Earth System Model Aerosol-Cloud Diagnostics Package (ESMAC Diags)

- **ESMAC Diags** is a Python-based diagnostics package to facilitate the routine evaluation of aerosols, clouds and aerosol-cloud interactions in E3SM.
- Currently cover six field campaigns and two long-term ARM sites with aircraft, ship, surface and satellite measurements.

Aircraft (black) and ship (red) tracks of the six field campaigns.

Tang et al. (2022) Geosci. Model Dev.

Preparation of ACTIVATE aircraft data for ESMAC Diags

• Aircraft data preparation:

- Initially applied to Falcon in-situ measurements (will extend to King Air data)
- Quality control
- Rescaled to 1-min resolution for contemporary aerosol and cloud measurements
- Standardized data format (netcdf)

Model evaluation (To do next):

 Need high-frequency model output along flight tracks to allow direct comparison

ACE-ENA: 2017 summer and 2017-2018 winter at Eastern North Atlantic

350

300

100

ERA5MERRA-2

● 0228_NC

E3SM single-column model (SCM) setup for ACTIVATE case study

- Model: E3SMv2 (100 km) SCM (Bogenschutz, Tang et al.)
- Large-scale forcings: derived from ERA5 (same as LES in Li et al., 2022)
- A smoke test (02-28-2020) has been successfully conducted, but the preliminary results are not comparable to LES and reanalysis.

Summary of model output and diagnostic package

Idealized-case WRF-LES

- Winter cases: 28 February, 1 March 2020 (06–21 UTC)
- Summer cases: 2/7 June 2021, 10/14 June 2022 (06–21 UTC)

Real-case WRF-CRM

- Winter case: 1 March 2020 (06–00 UTC)
- Sensitivity tests with different boundary conditions (ERA5 and FNL)

WRF output in netcdf

- State variables (T, P/Z, Q, U, V, W)
- Shortwave and longwave radiative fluxes
- Turbulent fluxes, cloud and other hydrometeors
- Every 30 minutes

Climate model simulations and diagnostic package

- E3SM Diags
- E3SM SCM results (the LES cases)
- E3SM and CESM simulations