STM - UPDATES FROM $\operatorname{CU/NASA}$ GISS

Florian Tornow, Andrew Ackerman, Ann Fridlind, George Tselioudis, Brian Cairns NASA GISS & Columbia University - presenting at the ACTIVATE STM, Tucson November 7th, 2022

1) DRY INTRUSIONS DRIVING CAO CLOUD TRANSITIONS

Approach & Findings

- extract several parallel trajectories from pre-campaign case
- compare meteorological aspects from reanalysis and run Lagrangian LES for four cases:
 - variation in cloud transition speeds explained by pattern of postfrontal boundary conditions largely shaped by free-tropospheric dynamics
 - CCN and LWP budgets highlight role of various processes

Cloud transitions seen from two satellite platforms (Tornow et al., in prep-1)

2) AEROSOL HYGROSCOPICITY IN EVOLVING CAOS

APPROACH

- per horizontal leg, obtain size dependent κ using several methods (right):
 - (1) large-to-small bin-wise integral and CCN closure
 - (2) fit lognormal modes and estimate κ values via CCN closure
 - (3) AMS-based estimate (not shown)
- assemble estimate for quasi-Lagrangian CAO flights
- ightharpoonup assess change in κ with fetch and per MBL and FT

Aerosol size distributions with modal fits (top-left), CCN-closure (bottom left), and obtained hygroscopicities (right, Tornow et al., in prep-2)

3) IMPROVING THE REPRESENTATION OF LIGHT RAIN

Notes

- use ACTIVATE to initialize and evalute Lagrangian LES
 - aerosol PSDs from upwind legs in MBL and FT
 - reanalysis for meteorological forcing
- drizzle first appears much further downwind in LES than in measurements
- next steps:
 - test alternative autoconversion formulations, and investigate with bin microphysics
 - explore role of GCCN using bin microphysics

Comparing ACTIVATE retrievals against Lagrangian LES (Tornow et al., in prep-3)

3) IMPROVING THE REPRESENTATION OF LIGHT RAIN

Notes

- use ACTIVATE to initialize and evalute Lagrangian LES
 - aerosol PSDs from upwind legs in MBL and FT
 - reanalysis for meteorological forcing
- drizzle first appears much further downwind in LES than in measurements
- next steps:
 - test alternative autoconversion formulations, and investigate with bin microphysics
 - explore role of GCCN using bin microphysics

Comparing ACTIVATE retrievals against Lagrangian LES (Tornow et al., in prep-3)

3) Improving the representation of light rain

Notes

- use ACTIVATE to initialize and evalute Lagrangian LES
 - aerosol PSDs from upwind legs in MBL and FT
 - reanalysis for meteorological forcing
- drizzle first appears much further downwind in LES than in measurements
- next steps:
 - test alternative autoconversion formulations, and investigate with bin microphysics
 - explore role of GCCN using bin microphysics

Comparing ACTIVATE retrievals against Lagrangian LES (Tornow et al., in prep-3)

3) IMPROVING THE REPRESENTATION OF LIGHT RAIN

NOTES

- use ACTIVATE to initialize and evalute Lagrangian LES
 - aerosol PSDs from upwind legs in MBL and FT
 - reanalysis for meteorological forcing
- drizzle first appears much further downwind in LES than in measurements
- next steps:
 - test alternative autoconversion formulations, and investigate with bin microphysics
 - explore role of GCCN using bin microphysics

Comparing ACTIVATE retrievals against Lagrangian LES (Tornow et al., in prep-3)

SCM SETUP (PRELIMINARY)

- ► force SCM with LES surface fluxes
- ▶ use simplified Beers law

SCM vs. LES

- agreement better than expected
- earlier rain formation
- shallower MBL and smaller peak LWP
- cloud breakup represented as transition to convective scheme

SCM SETUP (PRELIMINARY)

- force SCM with LES surface fluxes
- ▶ use simplified Beers law

SCM vs. LES

- agreement better than expected
- earlier rain formation
- shallower MBL and smaller peak LWP
- cloud breakup represented as transition to convective scheme

SCM SETUP (PRELIMINARY)

- force SCM with LES surface fluxes
- ▶ use simplified Beers law

SCM vs. LES

- agreement better than expected
- earlier rain formation
- shallower MBL and smaller peak LWP
- cloud breakup represented as transition to convective scheme

SCM SETUP (PRELIMINARY)

- force SCM with LES surface fluxes
- use simplified Beers law

SCM vs. LES

- agreement better than expected
- earlier rain formation
- shallower MBL and smaller peak LWP
- cloud breakup represented as transition to convective scheme

NEXT STEPS

- remove crutches:
 - reconcile differences in surface fluxes
- ▶ prognostic aerosol in SCM
- sensitivity to warm and cold precip. formation

