Earth Observing System (EOS)

Tropospheric Emission Spectrometer (TES)

Science Data Processing

Standard and Special Observation

Data Products Specifications

Author: Scott Lewicki

Version 6.0 (Science Software Release 6.4)

D-22993

December 10, 2004

JPL
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

Tropospheric Emission Spectrometer (TES)

Science Data Processing

Standard and Special Observation

Data Products Specifications

Author: Scott Lewicki

Version 6.0 (Science Software Release 6.4)

D-22993

/ed by:	
Dr. Reinhard Beer TES Principal Investigator, JPL	D. Shepard TES System Engineering PEM
R. Toaz TES GDS Manager, JPL	

December 10, 2004

JPL

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

TABLE OF CONTENTS

1.INTRODUCTION	1
1.1Identification	1
1.20verview	1
1.3Document Scope	1
1.4Method	1
1.5Controlling Documents	1
1.6Reference Documents	1
1.7Applicable Documents	2
2.Overview of File Structure for TES science data products.	1
2.1TES Products in Native HDF 5 Format.	1
2.1.1HDF 5 Data Types	1
2.2TES Products in HDF-EOS5 Format	1
2.3 Versioning of TES Products.	
2.3.1Versioning in Filenames	1
3.Level 1B Standard and special observation Products	1
3.10verview	1
3.2Nadir or Low Resolution Observations	2
3.2.1Structure of Nadir File	
3.3Limb or High Resolution Observations	3
3.3.1Structure of Limb File.	
3.4Spectra and NESR Data	4
3.5 Geolocation Data	4
3.6Engineering Data	7
3.7Quality Assessment (QA) Data	
3.8L1 ECS and TES-specific Metadata	
3.8.1Introduction.	
3.8.2ECS Inventory Metadata	
3.8.3Production History Metadata	13
3.8.4TES-Common Metadata	
3.8.5TES-L1B-Common Metadata	14
3.8.6TES-L1B-Nadir Metadata	14
3.8.7TES-L1B-Limb Metadata	15
4.Level 2 Standard and special observation Products	1
4.Level 2 Standard and special observation Products	1
4.1.1Standard Products	
4.1.2Special Observation Products	2
4.2Nadir File Structure	3
4.3Limb File Structure	3
4.4Ancillary File Structure	3
4.5Nadir Data Fields	
4.5.1Nadir Primary Data Fields	4
4.5.2Nadir Associated Data Fields	5
4.6Limb Data Fields	
4.6.1Limb Primary Data Fields	7
4.6.2Limb Associated Data Fields	8
4.7Ancillary Data Fields	9
4.8Geolocation Fields.	
4.9L2 ECS and TES-specific Metadata	
4.9.1Introduction.	
4.9.2ECS Inventory Metadata	15
4.9.3Production History Metadata	
4.9.4TES-Common Metadata	
4.9 STES-L2-Common	17

4.9.6TES-L2-Nadir Metadata	17
4.9.7TES-L2-Limb Metadata	17
4.9.8TES-L2-Ancillary Metadata	
Appendix A Acronyms.	
Appendix B Work-Off Plan Table	2

1. INTRODUCTION

1.1Identification

This is the Data Products Specification (DPS) for the JPL Tropospheric Emission Spectrometer (TES) Project.

1.20verview

This document provides the detailed contents and formats for the TES Standard and Special Observation Data Products produced at launch.

1.3Document Scope

This document provides specifications for all of the TES standard data products identified in the ICD between ECS and SIPS (423-41-57-10, Volume 10) and TES special observation data products. This document provides a source of requirements to Framework for supporting the listed data types and data objects. This document provides a source of requirements to the subsystems for the contents and formats of the standard data products.

1.4Method

This document provides the detailed contents and formats for the TES standard and special observation data products produced at launch. At that time it represents a baseline to the version of the products. Any changes to the contents or formats of the products after that time cannot occur without an update and re-release of this document

1.5Controlling Documents

1. JPL D-17961	Level 2 Subsystem Software Requirements
2. 423-41-64	ESDIS Project Requirements for EOS Instruments Team Science Team Science Data Processing Systems, 07-03-2001 (latest version found at http://spsosun.gsfc.nasa.gov/ESDIS_Pub.html)
3. 420-TP-022-001	Release 6A Implementation Earth Science Data Model for the ECS Project, May 2000 (latest version can be found at http://edhs1.gsfc.nasa.gov/)
4. NCAR Doc#: SW- NCA-079	HDF-EOS Aura File Format Guidelines
5. 423-41-57-10	Interface Control Document (ICD) between the EOSIDS Core System (ECS) and the Science Investigator-led Processing System (SIPS), Volume 10: Tropospheric Emission Spectrometer (TES) ECS Data Flows
6. JPL D-17962	Level 1B Subsystem Software Requirements

1.6Reference Documents

7. JPL D-13017	TES Experiment Implementation Plan
8. JPL D-13214	TES Software Management Plan
9. JPL D-8501	Software Management Policies and Requirements for EOS Flight Experiments
10. JPL D-11294	TES Scientific Objectives & Approach, Goals and Requirements

11. JPL D-19450	Ground System Requirements
12. JPL D-15522	Science Software Requirements
13. JPL D-1538	TES Command and Telemetry Handbook
14. 175-TP-510-001	HDF-EOS Interface Based on HDF5, Volume 1: Overview and Examples
1.7Applicable Documents	
15. HAIS 205-CD-002-001	Software Developer's Guide to Preparation, Delivery, Integration and Test with ECS, draft version, January 1995
	EOS Reference Handbook, NASA Goddard Space Flight Center
16. 194-207-SE1-001	System Design Specification for the ECS Project, Hughes Applied Information Systems, June 1994
17. 423-16-01	Data Production Software and Science Computing Facility Standards and Guidelines, EOSDIS, October 1996

2. OVERVIEW OF FILE STRUCTURE FOR TES SCIENCE DATA PRODUCTS

2.1TES Products in Native HDF 5 Format

The TES standard and special observation data products at Level 1B will be implemented in Native HDF5 format.

2.1.1HDF 5 Data Types

The HDF 5 library provides a number of datatypes with the naming convention, H5T_arch_base, where arch is an architecture name and base is a programming type name. The architecture (name) used by the TES ESDT product files is NATIVE. The NATIVE architecture is by design the most portable and contains C-like datatypes for the machine on which the library was compiled. These NATIVE type names are defined with the prefix "H5T_" in the HDF C library and are grouped together in the C++ class "PredType" in the HDF 5 C++ API. In this document only the prefix NATIVE and the type are listed.

Table 2-1 below shows an example of how a 32 bit integer type maps to the HDF 5 APIs and how it is listed in this document.

Table 2-2.1: Mapping of 32-bit Integer to HDF5 APIs

HDF 5 API	HDF 5 C++ API	Listing in this Document
H5T_NATIVE_INT32	PredType::NATIVE_INT32	NATIVE_INT32

2.2TES Products in HDF-EOS5 Format

TES will be using the HDF-EOS5 file format to store the scientific standard and special observation products at Level 2. The HDF-EOS extension to the HDF5 library provides the capability to incorporate swath mapping of the global survey data as well as compression and complex datatype usage.

2.3 Versioning of TES Products

For standard product granules versioning information has four types and is reported in four places:

- 1. End of standard product filename (and the ECS Metadata object LocalGranuleID for Level 2). Numbers capturing format changes and reruns/reprocessing.
- 2. ECS Metadata object LocalVersionID. Has format: "Executable Name: Clearcase Label"
- 3. ECS Metadata object PGEVersion. Release number, e.g. "R6.1".
- 4. Production History. Text block in standard product file.

2.3.1 Versioning in Filenames

The versioning issue covers two major aspects reflecting changes in the name of a data file:

1) Data file format changes.

2-

2) Data file content changes (coming from reruns or reprocessing)

The following naming conventions should be used to denote changes due to file format/content changes:

1

<file name> Fff cc...

where:

 \mathbf{F} = File Format placeholder

ff = 2-digit version number reflecting file Format changes

cc = 2-digit version number reflecting file Content changes

The following ground rules must be observed:

- 1) The two sets of identifiers may be incremented independent of each other.
- 2) The start default value for each set is 01.
- 3) Neither set can ever revert back to 01 and must always be incremented throughout the file span of the file.
- 4) The value of each set must always be incremented by 1.

The following are the definitions for Format and Content changes of any data file:

Format change:

- 1) Data type changes (new or redefined)
- 2) New/deleted/renamed data fields/structures
- 3) Dimension changes of data fields/structures

The basic rule defining a Format change is any change that must be reflected in the Data Products Specification (DPS), and therefore requires a DPS update. These DPS updates will be disseminated via change pages and captured in Clearcase, with complete releases of a new DPS version at certain time intervals.

Content change:

- 1) Data file created during a PGE re-run with a different set of input files or different environment.
- 2) Data file reprocessing where contents are updated for completeness or better accuracy/algorithm improvement.

The purpose of the content versioning number is only to reflect a particular run version, not the version of the TES science software used during the run. However, the implication would be that any re-processing run of the same PGE using a different input file set would generate product files with new contents, thus indicated by a new value for the cc field of the products' names.

2

3. LEVEL 1B STANDARD AND SPECIAL OBSERVATION PRODUCTS

3.10verview

At Level 1B, TES produces two standard products captured in two ESDTs: TL1BN for nadir-viewed data and TL1BL for limb-viewed data. For Special Observations, there are two "products" one for Low Resolution and one for High Resolution.

The primary data stored within the L1B nadir and limb products are spectra and noise-equivalent spectral radiance (NESR) data. In addition, the standard product files contain geolocation, engineering, production history, and data quality information.

Each L1B standard and special observation product is implemented as four files (one per Focal Plane) each using the native HDF 5 file format. HDF 5 files have a default extension of ".h5". The ECS Local Granule ID (filename) for a L1B standard product is constructed using the following template:

TES-Aura_L1B-<view>_FP<FP>_r<run id>-o<orbit number>_<version id>.h5

The table below lists each of the TES L1B standard products.

Table 3-3.1: TES L1B Standard Products

ESDT Short Name	ECS File Type	Collection Summary	File Names
TL1BN	HDF 5	TES Aura L1B Nadir	TES-Aura_L1B-Nadir_FP1A_rnnnnnnnnnnnnnn_Fff_cc.h5
			TES-Aura_L1B-Nadir_FP1B_rnnnnnnnnnnnnnn_Fff_cc.h5
			TES-Aura_L1B-Nadir_FP2A_rnnnnnnnnnnnnnn_Fff_cc.h5
			TES-Aura_L1B-Nadir_FP2B_rnnnnnnnnnnnnnnn_ Fff_cc.h5
TL1BL	HDF 5	TES Aura L1B Limb	TES-Aura_L1B-Limb_FP1A_rnnnnnnnnnnnnnn_ Fff_cc.h5
			TES-Aura_L1B-Limb_FP1B_rnnnnnnnnnnnnnn_ Fff_cc.h5
			TES-Aura_L1B-Limb_FP2A_rnnnnnnnnnnnnnnn_ Fff_cc.h5
			TES-Aura_L1B-Limb_FP2B_rnnnnnnnnnnnnnnn_ Fff_cc.h5

The table below lists each of the TES L1B special observation products.

Table 3-3.2: TES L1B Special Observation Products

Name	ECS File Type	File Names
Special Observation -	HDF 5	TES-Aura_L1B-SO-Low_FP1A_rnnnnnnnnn-onnnnn_Fff_cc.h5
Low Resolution		TES-Aura_L1B- SO-Low_FP1B_rnnnnnnnnnnnn_ Fff_cc.h5
		TES-Aura_L1B- SO-Low_FP2A_rnnnnnnnnn-onnnnn_ Fff_cc.h5
		TES-Aura_L1B- SO-Low_FP2B_rnnnnnnnnnn-onnnnn_Fff_cc.h5
Special Observation -	HDF 5	TES-Aura_L1B- SO-High_FP1A_rnnnnnnnnn-onnnnn_ Fff_cc.h5
High Resolution		TES-Aura_L1B- SO-High _FP1B_rnnnnnnnnnn-onnnnn_ Fff_cc.h5
		TES-Aura_L1B- SO-High _FP2A_rnnnnnnnnn-onnnnn_ Fff_cc.h5
		TES-Aura_L1B- SO-High _FP2B_rnnnnnnnnnn-onnnnn _ Fff_cc.h5

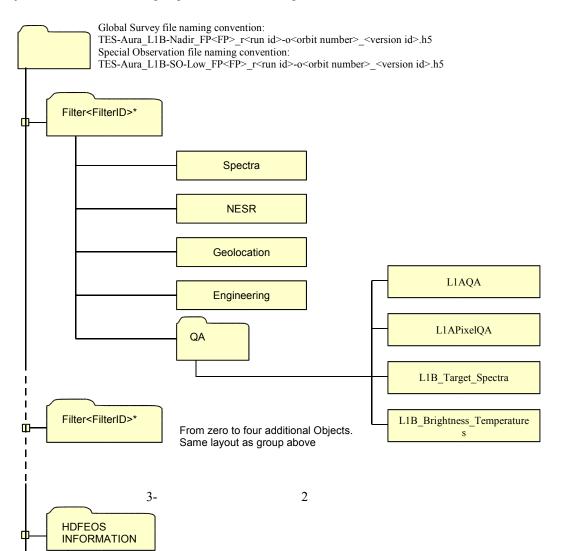
Where the string rnnnnnnnnnn represents the ten-digit Run ID, the string onnnnn represents the starting five-digit Absolute Orbit number, the substring "Fff_cc" represents a version ID which is used to keep track of file format changes (see Section 2.3.1).

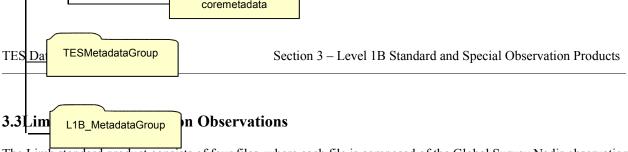
1

Note: TES data acquisition begins at the South Pole apex crossing, and subsequent orbits worth of data begin from there for the L1B granules. The Absolute Orbit number in the file name above is the same as the Aura orbit number at the time of the South Pole apex crossing.

For Special Observations, there is the potential for multiple products within a single orbit. These will be differentiated by Run Number. Special Observations which span multiple orbits, i.e. cross the South Pole apex, will be split into separate files.

3.2 Nadir or Low Resolution Observations

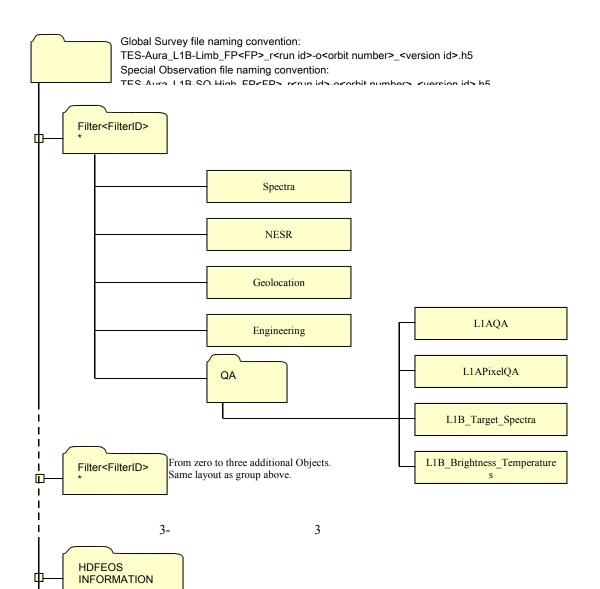

The Nadir standard product consists of four files, where each file is composed of the Global Survey Nadir observations from one of four focal planes for a single orbit. The number of observations within an orbit is fixed for a Global Survey, but that number may change if the configuration of the Global Survey is changed.

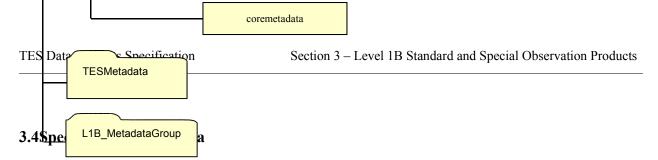

The Low Resolution special observation product also consists of four files, where each file is composed of special observations from one of four focal planes. A special observation product is of an undetermined length and may be smaller than an orbit or larger.

The filter position for a given focal plane is in the L1B-specific metadata. This filter position determines the dimensions of the filter group objects for each file.

3.2.1Structure of Nadir File

The structure of each of the Nadir or Low Resolution files contains groups for ECS (HDFEOS INFORMATION) and TES-specific metadata (including Production History) and groups for the data corresponding to specific filters. The data objects within each of these groups are shown in the figure below.


The Limb standard product consists of four files, where each file is composed of the Global Survey Nadir observations from the of filter local planes for a single orbit. The humber of observations within all orbit is fixed for a Global Survey, but that or unber for the filter plane can be of the Global Survey, but that or unber for the filter plane can be of the Global Survey is changed. 2A file can be 2A1, 2A2, 2A3, or 2A4; and for the Filter Plane 2B file will be 2B1.


The High Resolution special observation product also consists of four files, where each file is composed of special observations from one of four focal planes. A special observation product is of an undetermined length and may be smaller than an orbit or larger.

The filter position for a given focal plane is in the L1B-specific metadata. This filter position determines the dimensions of the filter group objects for each file.

3.3.1Structure of Limb File

The structure of each of the Limb or High Resolution files contains groups for ECS (HDFEOS INFORMATION) and TES-specific metadata (including Production History) and groups for the data corresponding to specific filters. The data objects within each of these groups are shown in the figure below.

Each product captures data in four focal planes for each observation. These focal planes are 1.4 B 2.24 and 2B. For each of these focal planes are 1.4 B 2.24 and 2B. For each of these focal planes there are sixteen pixels filter pugit 2A. The captures 2.2 bit float data. Along with the spectra data. NFSR data has the same characteristics, ranging from pixels 0 through 15 returning 32-bit float data. See tables below for all values and definitions of the sixteen pixels in each of the four focal planes. Each focal plane/filter position has a different number of samples for each spectrum.

Table 3-3.3: Spectra Data Type Definition

Data Name	Data Description	Units	Data Range	Size	Туре	HDF 5 Type
Spectra	Spectrum radiance	W/cm ² /	-10-4 - 10-4	32	float	NATIVE_FLOAT
	sample.	sr/cm ⁻¹	(fill= -999.)			

Table 3-3.4: NESR Data Type Definition

Data Name	Data Description	Units	Data Range	Size	Туре	HDF 5 Type
NESR	Noise equivalent spectral radiance	W/cm ² / sr/cm ⁻¹	-10 ⁻⁵ – 10 ⁻⁵	32	float	NATIVE_FLOAT
	sample.		(fill= -999.)			

Table 3-3.5: Focal Plane Data Dimensions

Dimension Name	Dimension Description	Dimension Size
TES_pixel_dim	Number of pixels in a TES focal plane.	16
Observations_dim	Number of sequences.	variable
Spectra_Samples_dim	Number of samples for Spectra & NESR	configurable

Dimensions are implemented in the file in "C" order, i.e. last dimension is the fastest.

Table 3-3.6: Focal Plane Spectra Dataset

Dataset Name	Dataset Description	Dimension List	Data Type
Spectra	Contains spectra data for all	TES_pixel_dim	Spectrum_type
	sixteen pixels in the focal plane	Observations_dim	
	for a nadir or a limb scan.	Spectra Samples dim	

Table 3-3.7: Focal Plane NESR Dataset

Dataset Name	Dataset Description	Dimension List	Data Type
NESR	Contains NESR data for all sixteen pixels in the focal plane for a nadir or a limb scan.	TES_pixel_dim Observations_dim	NESR_type
		Spectra_Samples_dim	

3.5Geolocation Data

For the Nadir-viewing product files (Low or High resolution), the geolocation is calculated from the boresight. For the Limb-viewing product files (Low or High resolution), the geolocation is calculated from the tangential height.

Table 3-3.8: Geolocation Dataset

Dataset Name	Dataset Description	Dimension List	Data Type
Geolocation	Contains geolocation data for each	Observations_dim	Geolocation_type
	sequence.		

Table 3-3.9: Geolocation Dataset Dimensions

Dimension Name	Dimension Description	Dimension Size
Observationss _dim	Number of observations.	variable

The Geolocation Dataset is implemented as a compound data type (for each Observations_dim) with the following definition.

Table 3-3.10: Geolocation Data Type Definition: Geolocation_type

					_	
Data Name	Data Description	Units	Data Range	Size	Type	HDF 5 Type
Time_of_Geolocation	Time of ZPD (Zero Path Difference)	TAI 93 time		64	double	NATIVE_DOUBLE
Geolocation_Failed	Failure indicator. False = 0 True = 1	N/A	01	8	int	NATIVE_SHORT
	If True, the following data fields will be set to zero or are suspect.					
OrbitAscendingFlag	Ascending node = 1 Descending node = 0	N/A	01	8	int	NATIVE_SHORT
Path_Number	Aura Path Number	N/A	1233	8	int	NATIVE_SHORT
PCS_QA_Poor_Percentage	Percent data interpolated	N/A	0100	8	int	NATIVE_SHORT
DPREP_QA_Poor_Percentage	Percent data interpolated	N/A	0100	8	int	NATIVE_SHORT
Orbit_Inclination_Angle	Orbit Inclination Angle	Decimal degrees	0180	64	double	NATIVE_DOUBLE
Latitude	Ground boresight location	Decimal degrees	±90.0	64	double	NATIVE_DOUBLE
Longitude	Ground boresight location	Decimal degrees	±180.0	64	double	NATIVE_DOUBLE
Elevation	Ground boresight elevation	Meters	-1000 100,000	32	float	NATIVE_FLOAT
Horizontal_Uncertainty	Uncertainty in geolocation horizontal position	Meters	-100,000 100,000	32	float	NATIVE_FLOAT
Elevation_Uncertainty	Uncertainty in geolocation elevation	Meters	-1000 100,000	32	float	NATIVE_FLOAT
Latitude_Footprint_1	Geo-location in geodetic co-	Decimal	±90	64	double	NATIVE_DOUBLE
Latitude_Footprint_2	ordinates of the four corners of the	degrees				
Latitude_Footprint_3 Latitude Footprint 4	footprint. Nadir footprint determined by field of view of pixels. Limb footprint is ±60 km track, ±12 km crosstrack from surface expression of bergright tracent point	Decimal degrees	±90	64	double	NATIVE_DOUBLE
Lantude_Pootprint_4		Decimal degrees	±90	64	double	NATIVE_DOUBLE
	of boresight tangent point. Latitude_Footprint_1=LowerLeft Latitude_Footprint_2=LowerRight Latitude_Footprint_3=UpperRight Latitude_Footprint_4=UpperLeft	Decimal degrees	±90	64	double	NATIVE_DOUBLE

5

Data Name Data Description Units Data Range Size HDF 5 Type Type Longitude Footprint 1 Geo-location in geodetic co-Decimal 64 double NATIVE DOUBLE ± 180 ordinates of the four corners of the degrees Longitude Footprint 2 footprint. Nadir footprint determined NATIVE_DOUBLE Decimal 64 double Longitude_Footprint 3 ±180 by field of view of pixels. Limb degrees Longitude Footprint 4 footprint is ±60 km track, ±12 km NATIVE DOUBLE Decimal ±180 64 double crosstrack from surface expression degrees of boresight tangent point Decimal 64 double NATIVE DOUBLE ±180 Longitude_Footprint_1=LowerLeft degrees Longitude_Footprint_2=LowerRight Longitude Footprint 3=UpperRight Longitude_Footprint_4=UpperLeft SurfaceElevation Average elevation over the footprint -1000.. 32 float NATIVE FLOAT Meters 100,000 Standard deviation of elevation over SurfaceElevStandardDeviation Meters -1000.. 32 float NATIVE FLOAT 100,000 the footprint Min Elev Footprint Lowest elevation over the footprint -1000.. 32 float NATIVE FLOAT Meters 100,000 Max Elev Footprint Greatest elevation over the footprint Meters -1000.. 32 float NATIVE FLOAT 100,000 Surface Type Footprint From DEM, 1=Fresh Water, 2=Soft 1..4 8 NATIVE SHORT Enumer-Int Water, 3=Land, 4=Mixed (not 100% ated of FW, SW, or Land) NATIVE SHORT Day_Night_Flag_Target 0=Night (False), 1=Day (True) T/F 0..1 8 int Day Night Flag SC 0=Night (False), 1=Day (True) T/F 0..1 8 int NATIVE SHORT LocalSolarTime Hours NATIVE FLOAT Local Mean Solar Time (hours from N/A 32 float midnight) TES boresight (LOS) azimuth angle TES Bsight Azimuth Decimal 0..360 64 double NATIVE DOUBLE relative to the local north at SC degrees Uncertainty in TES boresight Decimal 64 NATIVE DOUBLE TES Bsight Azimuth Uncert ± 180 double azimuth angle degrees TESBoresightNadirAngle TES boresight (LOS) nadir angle Decimal 0..90 64 double NATIVE DOUBLE relative to the local nadir at SC degrees Uncertainty in TES boresight nadir TES Bsight Nadir Uncert Decimal 64 double NATIVE DOUBLE ±90 angle degrees TES boresight (LOS) azimuth angle 0..360 Grd Trk TES Bsight Azimuth Decimal 64 double NATIVE DOUBLE relative to the local ground track degrees TES boresight (LOS) azimuth angle SpacecraftAzimuth Decimal 0..360 64 double NATIVE DOUBLE relative to the local north at the degrees geolocation SpacecraftZenith TES boresight (LOS) zenith angle 0..180 64 NATIVE DOUBLE Decimal double relative to the local zenith at the degrees geolocation Solar azimuth angle relative to the 0..360 64 NATIVE DOUBLE Tgt_Sun_Azimuth Decimal double local north at the geolocation degrees Solar zenith angle relative to the 0..180 NATIVE DOUBLE Tgt Sun Zenith Angle Decimal 64 double local zenith at the geolocation degrees NATIVE_DOUBLE Solar azimuth angle relative to the SolarAzimuthAngle Decimal 0..360 64 double local north at spacecraft point at degrees ZPD time Solar zenith angle relative to the 0..180 64 NATIVE DOUBLE SolarZenithAngle Decimal double local zenith at spacecraft point at degrees ZPD time M1 Mirror Sun Angle Angle between M1 mirror normal Decimal 0..180 64 NATIVE DOUBLE double and the sun degrees Decimal SpacecraftLatitude Geodetic latitude ±90 64 double NATIVE DOUBLE degrees Decimal 64 NATIVE DOUBLE SpacecraftLongitude Geodetic longitude double ± 180 degrees SpacecraftAltitude Geodetic spacecraft altitude (w/ -1000. 64 NATIVE DOUBLE Meters double respect to geoid) 10,000,000 Doppler Shift Relative frequency shift due to N/A 64 double NATIVE DOUBLE Doppler effect. Resolved SC Position X From ground corrected ephemeris 64 NATIVE DOUBLE ±8,000,000 double meters

Data Name	Data Description	Units	Data Range	Size	Type	HDF 5 Type
Resolved_SC_Position_Y	From ground corrected ephemeris	meters	±8,000,000	64	double	NATIVE_DOUBLE
Resolved_SC_Position_Z	From ground corrected ephemeris	meters	±8,000,000	64	double	NATIVE_DOUBLE
Resolved_SC_Velocity_X	From ground corrected ephemeris	meters/ sec	±10,000.0	64	double	NATIVE_DOUBLE
Resolved_SC_Velocity_Y	From ground corrected ephemeris	meters/ sec	±10,000.0	64	double	NATIVE_DOUBLE
Resolved_SC_Velocity_Z	From ground corrected ephemeris	meters/ sec	±10,000 .0	64	double	NATIVE_DOUBLE
Resolved_SC_Quaternion_Q1	From ground corrected ephemeris	N/A	-1.01.0	64	double	NATIVE_DOUBLE
Resolved_SC_Quaternion_Q2	From ground corrected ephemeris	N/A	-1.01.0	64	double	NATIVE_DOUBLE
Resolved SC Quaternion Q3	From ground corrected ephemeris	N/A	-1.01.0	64	double	NATIVE_DOUBLE
Resolved_SC_Quaternion_Q4	From ground corrected ephemeris	N/A	-1.01.0	64	double	NATIVE_DOUBLE
Resolved_SC_Attitude_Pitch	From ground corrected attitude	Decimal degrees	±90	64	double	NATIVE_DOUBLE
Resolved_SC_Attitude_Roll	From ground corrected attitude	Decimal degrees	±90	64	double	NATIVE_DOUBLE
Resolved_SC_Attitude_Yaw	From ground corrected attitude	Decimal degrees	±90	64	double	NATIVE_DOUBLE
Resolved_SC_Pitch_Rate	From ground corrected attitude	deg/sec	±0.3	64	double	NATIVE_DOUBLE
Resolved_SC_Roll_Rate	From ground corrected attitude	deg/sec	±0.3	64	double	NATIVE_DOUBLE
Resolved_SC_Yaw_Rate	From ground corrected attitude	deg/sec	±0.3	64	double	NATIVE_DOUBLE
PCS_Track	PCS track resolver position at time of ZPD	Decimal degrees		64	double	NATIVE_DOUBLE
PCS_Crosstrack	PCS crosstrack resolver position at time of ZPD	Decimal degrees		64	double	NATIVE_DOUBLE

3.6Engineering Data

Table 3-3.11: Engineering Dataset

Dataset Name	Dataset Description	Dimension List	Data Type
Engineering	Contains engineering data.	Observations_dim	Engineering_type

Table 3-3.12: Engineering Dataset Dimensions

Dimension Name	Dimension Description	Dimension Size
Observations_dim	Number of observations.	variable

The Engineering Dataset is implemented as a compound data type (for each Observation_dim) with the following definition.

Table 3-3.13: Engineering Dataset Type Definition: Engineering_type

Data Name	Data Description	Units	Data Range	Size	Type	HDF 5 Type
Scan	Scan number in sequence.	n/a	>0	8	int	NATIVE_INT8
Sequence	Sequence number in run.	n/a	>1	16	int	NATIVE_INT16
Time_of_Observation	Time of ZPD (Zero Path Difference)	TAI93		64	double	NATIVE_DOUBLE
Filter_Identification	Optical Filter Identification		"1"	8	char	NATIVE_CHAR
ADC_Enabled	Analog to Digital sampling		01	16	int	NATIVE_INT16
Elect_Filter	Filter Center Frequency		3.3 0.0	32	float	NATIVE_FLOAT
Fringe_Clock_Divisor	Sets ADC Sampling Rate		815	16	int	NATIVE_INT16

7

Data Name	Data Description	Units	Data Range	Size	Туре	HDF 5 Type
AT_Index	Indicator as to whether the Filter Wheel is at a predetermined index point.		0, 1	8	int	NATIVE_SHORT
Filter_Wheel_Index	Filter Wheel Index position		01	16	int	NATIVE_INT16
Signal_Chain_Gain	Mapping from signal chain (1A, 1B, 2A, 2B) to a gain factor.		0.5, 1.0, 2.0, 4.0, 32.0	32	float	NATIVE_FLOAT
Detector_Temp	Measurement of a given focal plane detector temperature.	K	160 – 361	32	float	NATIVE_FLOAT
Observation_Type	TES Defined Scans		140	16	int	NATIVE_INT16
ICS_Scan_Direction	Arm scan direction: 0 = reverse 1 = forward		"0", "1"	8	char	NATIVE_CHAR
Blackbody_Wall_Temp_#1	Blackbody Wall Temperature #1 from the Calibration Subsystem Electronics board.	K	213 - 349	32	float	NATIVE_FLOAT
Blackbody_Wall_Temp_#2	Blackbody Wall Temperature #2 from the Calibration Subsystem Electronics board.	K	213 – 349	32	float	NATIVE_FLOAT
Cold_Reference_Plate_Temp_#1	Cold Reference Plate Temperature #1 from the Operational Support Electronics board.	K	160 – 361	32	float	NATIVE_FLOAT
Cold_Reference_Plate_Temp_#2	Cold Reference Plate Temperature #2 from the Operational Support Electronics board.	K	160 – 361	32	float	NATIVE_FLOAT
Beamsplitter_Temp_#1	Beamsplitter Temperature #1 from the Operational Support Electronics board.	K	160 – 361	32	float	NATIVE_FLOAT
Beamsplitter_Temp_#2	Beamsplitter Temperature #2 from the Operational Support Electronics board.	K	160 – 361	32	float	NATIVE_FLOAT
Foreoptics_Temp	Foreoptics Temperature from the Engineering Data Interface board.	K	198 – 359	32	float	NATIVE_FLOAT
M1_Mirror_Temp	M1 Mirror Temperature from the Postiioning Control Subsystem electonics board.	K	173 – 364	32	float	NATIVE_FLOAT
M2_Mirror_Temp	M2 Mirror Temperature from the Postiioning Control Subsystem electonics board.	K	198 – 359	32	float	NATIVE_FLOAT
Calibration_SS_Resistor_1	Provides the measurement data for Calibration Subsystem Calibration Resistor 1 from the Calibration Subsystem Electronics board.	Ohms	1990-2010	32	float	NATIVE_FLOAT
Calibration_SS_Resistor_2	Provides the measurement data for Calibration Subsystem Calibration Resistor 2 from the Calibration Subsystem Electronics board.	Ohms	2930–2950	32	float	NATIVE_FLOAT
OSE_Resistor_1	Provides the measurement data for OSE Calibration Resistor 1 from the Operational Support Electronics board.	Ohms	22580- 24110	32	float	NATIVE_FLOAT
OSE_Resistor_2	Provides the measurement data for OSE Calibration Resistor 2 from the Operational Support Electronics board.	Ohms	34870- 35175	32	float	NATIVE_FLOAT

3.7Quality Assessment (QA) Data

Quality data consists of quality flags for the scan level and quality flags for all sixteen pixels in each focal plane. Each focal plane will contain this set of quality data.

QA data are placed in the following groups. Within each group are datasets listed in subsequent tables.

Table 3-3.14: QA Groups

Group Name	Datasets Description	Dimension List
L1AQA	Contains quality datasets for all sixteen pixels in each focal plane for a scan within a sequence.	Observations_dim
L1APixelQA	Contains L1A quality datasets for each pixel in a	TES_pixel_dim
	specific filter for an observation	Observations_dim
L1B_Target_Spectra	Contains L1B Target Spectra datasets	TES_pixel_dim
		Observations_dim
L1B_Brightness_Temperatures	Contains L1B Brightness Temperatures datasets	TES_pixel_dim (limb only)
		Observations_dim

Table 3-3.15: QA Datasets Dimensions

Dimension Name	Dimension Description	Dimension Size
TES_pixel_dim	Number of pixels in a TES focal plane.	16
Observations_dim	Number of observations.	variable

The following is a list of the L1A QA datasets.

Table 3-3.16: L1AQA Group Datasets

Data Name	Data Description	Units	Data Range	Size	Type	HDF 5 Type
L1A_Ifgm_Dropout_Occurred	Missing packet	N/A	0 or 1 (Boolean)	8	int	NATIVE_SHORT
			True=1			
			False=0			
L1A_Time_Date_Error_Occurred	Error in header	N/A	0 or 1 (Boolean)	8	int	NATIVE_SHORT
			True=1			
			False=0			
L1A_Sequence_Error_Occurred	Error in run, sequence,	N/A	0 or 1 (Boolean)	8	int	NATIVE_SHORT
	scan		True=1			
			False=0			
L1A_Filter_Seq_Error_Occurred	Filter wheel position not	N/A	0 or 1 (Boolean)	8	int	NATIVE_SHORT
	as expected		True=1			
			False=0			
L1A_SC_Attitude_Out_Of_Spec	Attitude not as expected	N/A	0 or 1 (Boolean)	8	int	NATIVE_SHORT
			True=1			
			False=0			
L1A_ICS_Direction_Out_Of_Sequence	ICS Scan direction not as	N/A	0 or 1 (Boolean)	8	int	NATIVE_SHORT
	expected		True=1			
			False=0			

9

Data Name	Data Description	Units	Data Range	Size	Type	HDF 5 Type
L1A_ICS_Speed_Variation_Out_Of_ Specification	ICS speed variation over spec	N/A	02	8	int	NATIVE_SHORT
L1A_BB_Temperature_Out_Of_ Specification	Black body temperatures out of spec	N/A	0 or 1 (Boolean) True=1 False=0	8	int	NATIVE_SHORT
L1A_Cold_Ref_Plate_Temperature_ Out_Of_Specification	Cold Reference Plate temperature out of spec.	N/A	0 or 1 (Boolean) True=1 False=0	8	int	NATIVE_SHORT
L1A_Engineering_Temperatures_Out_Of _Specification	Any High Rate PRT not specified	N/A	02	8	int	NATIVE_SHORT
L1A_Channel_Shift	Indicates detected telemetry channel shift	N/A	0=no shift -115=shift	8	Int	NATIVE_SHORT

The following is a list of the L1A Pixel QA datasets. They are dimensioned Observations_dim x TES_pixel_dim.

Table-3.17: L1AQA Group Datasets

Data Name	Data Description	Units	Data Range	Size	Type	HDF 5 Type
L1A_Spike_Occurred	10x neighboring values	N/A	0 or 1 (Boolean)	8	int	NATIVE_SHORT
			True=1			
			False=0			
L1A_DN_Overflow_Occurred	DN > tolerance	N/A	0 or 1 (Boolean)	8	int	NATIVE_SHORT
			True=1			
			False=0			
L1A_DN_Underflow_Occurred	DN < tolerance	N/A	0 or 1 (Boolean)	8	int	NATIVE_SHORT
			True=1			
			False=0			

For the following tables, Flags have the definition:

- -1 = the error/quality measurement and check was not performed.
- 0 = the error/quality measurement was done, and the measurement did not exceed tolerance (SUCCESS).
- +1 = the error/quality measurement was done, and the measurement exceeded tolerance (FAILURE).

The following datasets in L1B Target Spectra Quality are dimensioned Observations_dim x TES_pixel_dim.

Table 3-3.18: L1B_Target_Spectra Group Quality Datasets

Data Name	Data Description	Units	Data Range	Size	Type	HDF 5 Type
L1B_Zero_Padding	the ratio of zero padding	N/A	0.0-1.0	32	float	NATIVE_FLOAT
	size to the FFT size					
L1B_Zero_Padding_Flag		N/A	-1,0,+1	8	int	NATIVE_SHORT
L1B_Missing_Cal_Table_Flag	at least one calibration	N/A	-1,0,+1	8	int	NATIVE SHORT
	table is missing					_
L1B_Cal_Table_Quality_Flag	at least one calibration	N/A	-1,0,+1	8	int	NATIVE SHORT
	table has <i>suspicious</i> quality					_
Y I D DI	1	37/4			a .	
L1B_Phase_Alignment	the chi-square of the	N/A	>= 0	32	float	NATIVE_FLOAT
	imaginary of calibration					
	ratio is too large					
L1B_Phase_Alignment_Flag		N/A	-1,0,+1	8	int	NATIVE_SHORT

Data Name	Data Description	Units	Data Range	Size	Type	HDF 5 Type
L1B_Absolute_Radiance_Mean_BT	The mean of the absolute		>=0; 10-5	32	float	NATIVE_FLOAT
	value of real target					_
	spectra after radiometric calib.					
L1B Absolute Radiance Mean BT Flag	cano.	N/A	-1,0,+1	8	int	NATIVE SHORT
L1B NESR Mean	NESR mean between full	1,111	>= 0; 10-6	32	float	NATIVE FLOAT
	in-band range (full power		,	32		TATTVE_TEOM
	points)					
L1B_NESR_Mean_Flag		N/A	-1,0,+1	8	int	NATIVE_SHORT
L1B_Imaginary_RMS	target spectrum		>= 0; 10-6	32	float	NATIVE FLOAT
	imaginary RMS between half power points					_
L1B_Imaginary_RMS_Flag		N/A	-1,0,+1	8	int	NATIVE SHORT
L1B_Imaginary_Mean	target spectrum		+/-10 ⁻⁷	32	float	NATIVE_FLOAT
	imaginary mean between					_
	half power points					
L1B_Imaginary_Mean_Flag		N/A	-1,0,+1	8	int	NATIVE_SHORT
L1B_General_Quality_Flag	See notes below	N/A	0,+1	8	int	NATIVE_SHORT
L1B_General_Error_Flag	See notes below	N/A	0,+1	8	int	NATIVE SHORT

L1B_General_Quality_Flag and L1B_General_Error_Flag are binary flags they are set to 0 (good) or 1 (bad).

L1B_General_Error_Flag set equal to 1 means that at some processing step an error was detected, and the spectrum was dropped. A spectrum with its L1B_General_Error_Flag set to 1 will not appear in the final product.

L1B_General_Quality_Flag set equal to 1 means that the spectrum may have some quality problem. A spectrum that just has some quality problem does appear in final L1B product.

The following datasets in L1B Nadir Brightness Temperatures are dimensioned only by Observations_dim.

Table 3-3.19: L1B_Brightness_Temperatures Group Datasets for Nadir

Data Name	Data Description	Units	Data Range	Size	Type	HDF 5 Type
L1B_Nadir_BT_11	Average brightness temperature in band 11		-100.0—1000.0 Fill = -999.0	32	float	NATIVE_FLOAT
L1B_Nadir_ BT_12	Average brightness temperature in band 12		-100.0—1000.0 Fill = -999.0	32	float	NATIVE_FLOAT
L1B_Nadir_ BT_8	Average brightness temperature in band 8		-100.0—1000.0 Fill = -999.0	32	float	NATIVE_FLOAT
L1B_Nadir_ BT_5	Average brightness temperature in band 5		-100.0—1000.0 Fill = -999.0	32	float	NATIVE_FLOAT
L1B_Nadir_ BT_10	Average brightness temperature in band 10		-100.0—1000.0 Fill = -999.0	32	float	NATIVE_FLOAT
L1B_N_Interpixel_Vari_BT10	Measure of variation in BT-10 across all pixels			32	float	NATIVE_FLOAT
L1B_N_ Ipix_Var_Exceeded_BT10	Nadir scene interpixel variability exceeded threshold	N/A	-1 = Test not performed, 0 = False, 1 = True	8	int	NATIVE_SHORT
L1B_N_Interpixel_Vari_BT11	Measure of variation in BT-11 across all pixels			32	float	NATIVE_FLOAT
L1B_N_ Ipix_Var_Exceeded_BT11	Nadir scene interpixel variability exceeded threshold	N/A	-1 = Test not performed, 0 = False, 1 = True	8	int	NATIVE_SHORT

The following datasets in L1B Limb Brightness Temperatures are dimensioned Observations_dim x TES_pixel_dim.

Table 3-3.20: L1B	Brightness	Temperatures	Group Da	itasets for Limb

Data Name	Data Description	Units	Data Range	Size	Type	HDF 5 Type
L1B_Limb_BT_11	Average brightness temperature in band 11		-100.0—1000.0 Fill = -999.0	32	float	NATIVE_FLOAT
L1B_Limb_BT_12	Average brightness temperature in band 12		-100.0—1000.0 Fill = -999.0	32	float	NATIVE_FLOAT
L1B_Limb_BT_8	Average brightness temperature in band 8		-100.0—1000.0 Fill = -999.0	32	float	NATIVE_FLOAT
L1B_Limb_BT_5	Average brightness temperature in band 5		-100.0—1000.0 Fill = -999.0	32	float	NATIVE_FLOAT
L1B_Limb_BT_10	Average brightness temperature in band 10		-100.0—1000.0 Fill = -999.0	32	float	NATIVE_FLOAT

3.8L1 ECS and TES-specific Metadata

3.8.1Introduction

As with all ESDTs, TES ESDTs contain metadata that describes specific attributes about the data or the quality of data contained in the ESDT. Some of the basic metadata items are required by EOSDIS. These data items commonly include basic identification information and other generic information about the particular ESDT. These data items are referred to as ECS Inventory Metadata. In addition to ECS Inventory Metadata, TES ESDTs contain additional metadata more specific to the TES program. The TES-specific metadata has been subdivided into four subcategories based on the uniqueness of its origin and identification:

1.	TES Production History	Production History Metadata
2.	TES-Common	Metadata common to all TES ESDTs
3.	TES-L1B-Common	Metadata common to all Level 1B ESDTs
4.	TES-L1B-observation specific	Metadata unique to a particular ESDT subtype.

TES common metadata are fairly generic to the entire family of TES ESDTs or to TES L1B products. TES-L1B-observation specific, as described by name, are unique to a particular family of L1 ESDTs.

3.8.2ECS Inventory Metadata

The ECS Inventory Metadata is implemented in the HDF file as text block named coremetadata within a group named HDFEOS INFORMATION.

Table 3-3.21: ECS Inventory Metadata

Data Layer Name	Data Description	TES Valids	Type ¹	Source
AssociatedInstrumentShortName	Instrument short name supplied by TES project.	TES	VA20	MCF
AssociatedPlatformShortName	Platform short name supplied by EOS project.	Aura	VA20	MCF
AssociatedSensorShortName	Sensor short name supplied by TES project.	FTS	VA20	MCF
OperationMode	Mode of operation of the instrument.	Routine	VA20	MCF
ShortName	This name will identify the ESDT short name associat with the collection or granule.	ed(set in MCF file)	A8	MCF
VersionID	Version identifier of the ESDT data collection.	(set in MCF file)	SI	MCF
ProductionDateTime	The date and time a specific granule was produced by PGE.	a YYYY-MM-DDT HH:MM:SS.SSSZ	DT	TK
SizeMBECSDataGranule	The size attribute will indicate the volume of data contained in the granule.		F10	DSS

¹ Data types and Source given are specified in document [3] in paragraph 1.5

Data Layer Name	Data Description	TES Valids	Type	Source
LocalVersionID	Local version identifier for PGE defined granule versions. Takes the form "executable name: Clearcase label"		VA60	PGE
InputPointer	Description of location of Production History information.	"Production History block at: / TESMetadataGroup/Pr oductionHistory"	VA255	PGE
ParameterName	Scope of quality flags. For tests, refers to entire granule.	Granule	A40	PGE
ScienceQualityFlag	The granule level flag applying generally to the granule and specifically to parameters at the granule level.	e Passed Being Investigated Inferred Passed Suspect Failed Not Investigated Inferred Failed	VA25	DP
ScienceQualityFlagExplanation	A text explanation of the criteria used to set the ScienceQualityFlag including thresholds or other criteria.	(Free text)	VA255	DP
RangeBeginningDate	The year, month, and day when the temporal coverage period being described began.	YYYY-MM-DD	DT	PGE
RangeBeginningTime	The first hour, minute, and second of the temporal coverage period being described.	HH:MM:SS	T	PGE
RangeEndingDate	The last year, month, and day when the temporal coverage period being described.	YYYY-MM-DD	DT	PGE
RangeEndingTime	The last hour, minute, and second of the temporal coverage period being described.	HH:MM:SS	T	PGE
PGEVersion	The Release of the PGE software: e.g. "R6.1"		A10	PGE

3.8.3 Production History Metadata

The Production History Metadata is implemented as a single text block and written to the HDF file as a file level attribute. The Production History text block contains information about the L1 PGE and the running execution of the PGE to produce ESDT standard products. Static information in the text block describes the elements that make up the PGE like build configuration, support files and database table population. Dynamic information describes all the running parameters involved in a PGE execution for a specific RUN ID. This information is captured for both pre and post execution of the L1 Product PGE.

Table 3-3.22: L1 Production History

History Data	Data Description	Size (K)	State
ECS	Toolkit file for input/output file specification	23	Dynamic
Environment Variable	SIPS environment variables	5	Dynamic
Fetch	SIPS fetch list from archived	5	Dynamic
SIPS PCF	SIPS-specific PCF file for PGE processing	3	Dynamic
Workspace List (PRE)	File listing in SIPS PGE workspace prior to PGE execution	5	Dynamic
Workspace List (POST)	File listing in SIPS PGE workspace following PGE execution	5	Dynamic
Runtime	CPU and Wallclock PGE run time	0.1	Dynamic
Control Definition	Framework Parameter Definition File for output files	1	Static
Control Parameter	Framework Parameter Specification File for output files	0.02	Static
Control Parameter (Runtime)	Framework Parameter specified in the command line of the PGE	0.02	Dynamic
TimeStamp	RUN ID begin date and end date timestamp	0.05	Dynamic
README	README file that describes production history context	1	Static
PGE Version	PGE version information	0.2	Static
PGE specific configurations	TBD	TBD	TBD

3.8.4TES-Common Metadata

Metadata shown below is common to all TES files.

Table 3-3.23: TES-Common Metadata

Data Layer Name	Data Description	Units	Data	Size	Type	HDF5Type	Source
			Range				
InstrumentName	TES				char	NATIVE_CHAR	MCF
ProcessLevel	L1B,L2,L3,etc.				char	NATIVE_CHAR	MCF
TAI93AtOzOfGranule					double	NATIVE_DOUBLE	PGE
GlobalSurveyNumber/ID	Run ID		0	64	int	NATIVE_INT64	PGE
GranuleMonth	Month granule was produced (from ECS MD RangeBeginningDate)		1-12	8	int	NATIVE_INT	PGE
GranuleDay	Day granule was produced (from ECS MD RangeBeginningDate)		1-31	8	int	NATIVE_INT	PGE
GranuleYear	Year granule was produced (from ECS MD RangeBeginningDate)				int	NATIVE_INT	PGE
SurveyMode	Type of survey, e.g., Global or Special				char	NATIVE_CHAR	MCF
PGEVersion	Release of PGE software: e.g. "R6.1"				char	NATIVE_CHAR	MCF

3.8.5TES-L1B-Common Metadata

Metadata shown below is common to all TES L1B files.

Table 3-3.24: TES-L1B-Common Metadata

Data Name	Data Description	Units	Data Range	Size	Type	HDF 5 Type
Run_Counter				32	int	NATIVE_INT32
Orbital Path ID			1233	8	int	NATIVE_SHORT
Absolute_Orbit_Number				32	Int	NATIVE_INT32
Time_Of_Observation_Start	TAI time, for first observation in file			64	double	NATIVE_DOUBLE
Time_Of_Observation_End	TAI time, for last observation in file			64	double	NATIVE_DOUBLE
Geolocation_Data_Missing	No geolocation for observation count		0360	16	int	NATIVE_INT16
IceContamination	Ice contamination exceeded threshold.	N/A	0,1	8	int	NATIVE_INT
L1A_Data_Missing	Fatal error count percentage		0100.0	32	float	NATIVE_FLOAT
L1B_Data_Missing	Fatal error count percentage		0100.0	32	float	NATIVE_FLOAT
Command_Seq_ID	Command Sequence (Run) ID	N/A		32	int	NATIVE_INT32

3.8.6TES-L1B-Nadir Metadata

Metadata shown below is present only in TES L1B Nadir files.

Table 3-3.25: TES-L1B-Nadir Metadata

Data Name	Data Description	Units	Data Range	Size	Type	HDF 5 Type	
-----------	------------------	-------	------------	------	------	------------	--

Start_Frequency	Start Frequency	500 - 3200	64	double	NATIVE_DOUBLE
Delta Frequency	Frequency step size	.011	64	double	NATIVE_DOUBLE

3.8.7TES-L1B-Limb Metadata

Metadata shown below is present only in TES L1B Limb files.

Table 3-3.26: TES-L1B-Limb Metadata

Data Name	Data Description	Units	Data Range	Size	Type	HDF 5 Type
Start_Frequency	Start Frequency		500 - 3200	64	double	NATIVE_DOUBLE
Delta Frequency	Frequency step size		.011	64	double	NATIVE_DOUBLE

15

4. LEVEL 2 STANDARD AND SPECIAL OBSERVATION PRODUCTS

4.10verview

The TES Level 2 (L2) subsystem generates information pertaining to the abundance of trace gases in the troposphere from analysis of spectra generated from the TES Level 1B subsystem. These spectra are evaluated by L2 using modeling algorithms collectively referred to as *retrieval*. An iterative process, retrieval compares an observed spectra to a modeled spectra, determines their similarity/dissimilarity, and the modifies the modeled spectra. Nominally, the retrieval process is repeated until the modeled spectra matches the observed spectra within certain tolerances. In addition to retrieving information pertaining to the distribution of trace atmospheric gases, L2 retrieves temperature information for the sampled atmosphere. The "retrieved" information is stored for later generation of L2 Products.

Before L2 can generate its products, the retrieval process is completed for all target scenes comprising a global survey or Special Observation run. A Global Survey consists of 16 consecutive orbits at the start of a two-day cycle. A Special Observation run may be less than one orbit or span multiple orbits. There can be more than one Special Observation run in a single orbit.

Once all retrievals are performed, L2 products are produced. While each retrieval yields information pertaining to several trace molecules (and temperature), L2 products include information for one molecular species (or temperature) for an entire global survey or Special Observation run. Data are oriented in this fashion to facilitate science evaluations where only one or a minimal set of atmospheric gases are involved.

4.1.1Standard Products

L2 standard data products are segregated by observation type (limb and nadir) to minimize the use of fill data. For nadir observations, TES L2 standard products are produced for the following molecular species: H₂O, O₃, CH₄, CO, AtmT (atmosphieric temperature). For limb observations, L2 standard products include more molecular species: H₂O, O₃, CH₄, CO, NO₂, HNO₃, and AtmT. See Table 4-1.

NO2 HNO3 H2O О3 CH4 CO AtmT Nadir Swath Object X X X X X Limb Swath Object X X X X X X \mathbf{X}

Table 4-4.1: View and Species Types

To minimize the duplication of information among all these standard products, an additional standard product, termed an TES L2 Ancillary Data product, will be generated as well. All TES L2 standard products report this information along a uniform UARS pressure grid ordered from ground to space.

To facilitate sharing data products between all Aura platform science teams, the organization of the L2 Standard Data Products conforms to specifications dictated in the <u>HDF-EOS Aura File Format Guidelines</u> (Craig, et al). These guidelines lay down the basic file format and data format specifications for all L2 standard products. While the specific referenced document should be checked for details, the guidelines specify that all L2 standard products should be generated using HDF-EOS V5.x formatting specifications. All data are to be reported as "swath" data objects. The Local Granule ID is a unique identifier for locally produced granules that are then sent to the ECS for archive. The Local Granule ID is also the filename of the standard data product produced by Level 2.

The L2 standard product files are implemented using the HDF-EOS 5 file format. HDF-EOS 5 files have a default extension of ".he5". The ECS Local Granule ID (filename) for a L2 standard product is constructed using the following template:

1

TES-Aura_L2-<species>-<view>_r<run id>_<version id>.he5

ESDT Short Name ECS File Type Local Granule IDa **Collection Summary** HDF-EOS TL2H2ON TES/Aura L2 H2O Nadir TES-Aura L2-H2O-Nadir rnnnnnnnn Fff cc.he5 TL2H2OL **HDF-EOS** TES/Aura L2 H2O Limb TES-Aura L2-H2O-Limb rnnnnnnnn Fff cc.he5 TL2O3N HDF-EOS TES/Aura L2 O3 Nadir TES-Aura L2-O3-Nadir rnnnnnnnn Fff cc.he5 TES/Aura L2 O3 Limb TES-Aura_L2-O3-Limb_rnnnnnnnn_ Fff_cc.he5 TL2O3L HDF-EOS TL2CH4N HDF-EOS TES/Aura L2 CH4 Nadir TES-Aura_L2-CH4-Nadir_rnnnnnnnn_ Fff_cc.he5 TL2CH4L **HDF-EOS** TES/Aura L2 CH4 Limb TES-Aura L2-CH4-Limb rnnnnnnnn Fff cc.he5 TL2CON HDF-EOS TES/Aura L2 CO Nadir TES-Aura L2-CO-Nadir rnnnnnnnn Fff cc.he5 TL2COL HDF-EOS TES/Aura L2 CO Limb TES-Aura_L2-CO-Limb_rnnnnnnnn_ Fff_cc.he5 TES-Aura L2-NO2-Limb rnnnnnnnn Fff cc.he5 TL2NO2L HDF-EOS TES/Aura L2 NO2 Limb TL2HNO3L **HDF-EOS** TES/Aura L2 HNO3 Limb TES-Aura L2-HNO3-Limb rnnnnnnnn Fff cc.he5 TL2ATMTN **HDF-EOS** TES/Aura L2Atmospheric TES-Aura L2-ATM-TEMP-Nadir rnnnnnnnn Fff cc.he5 Temperatures Nadir TL2ATMTL HDF-EOS TES/Aura L2 Atmospheric TES-Aura L2-ATM-TEMP-Limb rnnnnnnnn Fff cc.he5 Temperatures Limb TES-Aura_L2-ANCILLARY_rnnnnnnnn Fff cc.he5 TL2ANC **HDF-EOS** TES/Aura L2 Ancillary Data

Table 4-4.2: EOS Aura TES Standard Products (Level 2)

As mentioned above, each TES L2 standard product reports information in a standardized data organization, the swath. Each swath element is bounded by (1) the number of observations in a global survey and (2) a predefined set of pressure levels representing slices through the atmosphere.

The organization of data within the swath object is based on a superset of the UARS pressure levels used to report concentrations of trace atmospheric gasses. The reporting grid is the same pressure grid used for modeling. There are 87 reporting levels from 1211.53 hPa, which allows for very high surface pressure conditions, to 0.1 hPa, about 65 km. In addition, the nadir and limb products will report values directly at the surface when possible or at the observed cloud top level. Thus in the Standard Product files each nadir and limb observation can potentially contain estimates for the concentration of a particular molecule at 88 different pressure levels within the atmosphere. However, for almost all retrieved profiles, the highest pressure levels are not observed due to a surface at lower pressure or cloud obscuration. For pressure levels corresponding to altitudes below the cloud top or surface, where measurements were not possible, a fill value will be applied.

Finally, other data are included with estimates for molecular concentration. Some of these data such as precision estimates are reported at the same density as the data points, while other information defines an aspect of a target scene's characteristics in a single data value

4.1.2Special Observation Products

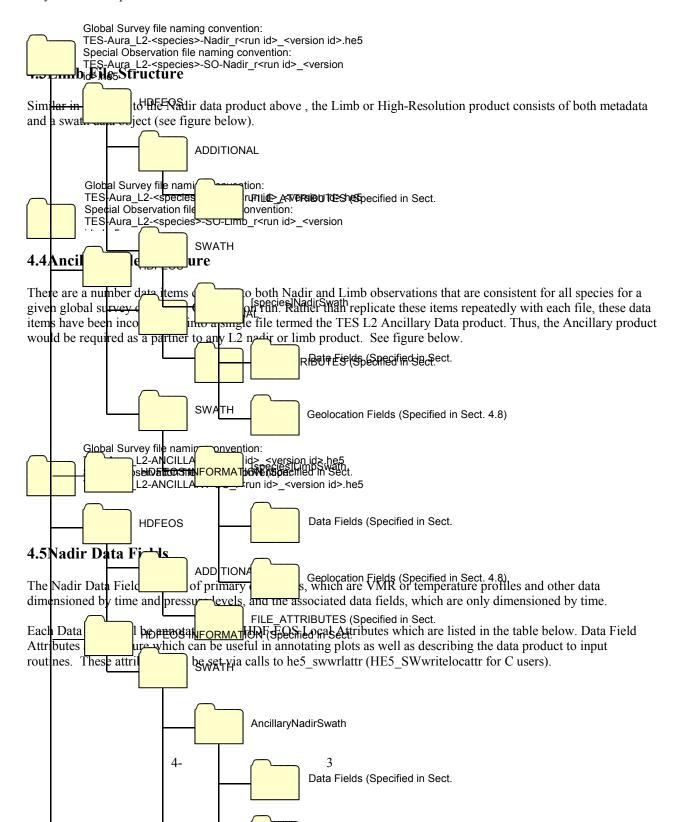
L2 Special Observation data products are also segregated by observation type (limb and nadir) to minimize the use of fill data.

The L2 Special Observation files are also implemented using the HDF-EOS 5 file format. HDF-EOS 5 files have a default extension of ".he5". The filename for a L2 Special Observation product is constructed using the following template:

TES-Aura L2-<species>-SO-<view> r<run id> <version id>.he5

4-

At this time, it is not known which species will be reported for Special Observation runs processed through Level 2 beyond those shown above for Standard Products.


2

As above for Standard Products, each TES L2 Special Observation product reports information in a standardized data organization, the swath. Each swath element is bounded by (1) the number of observations in a Special Observation run and (2) a predefined set of pressure levels representing slices through the atmosphere as described above.

a. Where rnnnnnnnnn corresponds to the run id and Fff cc is the file version number (see Section 2.3.1).

4.2Nadir File Structure

The file structure of each nadir standard or special observation product is depicted in the figure below. In addition to the swath object (described above), each nadir standard product also contains descriptive metadata. The organization and layout of metadata conforms to HDF-EOS guidelines. First, an ECS Metadata block, metadata that includes a set of mandatory data describing attributes about the standard product is found at the beginning of every standard product. TES-specific metadata follows the ECS metadata. These metadata fields are used to describe TES specific details. Some of these data will be common among all TES products, some common only to TES Level 2 products, and some specific only to Nadir L2 products.

The values used for these attributes are also in the data fields tables below.

4.5.1 Nadir Primary Data Fields

The table below shows the swath data dimensions. The pressure levels as shown in this table are the 87 pressure levels plus one surface level as described in the Overview (Section 4.1).

All nadir swath data fields are based on a unified data structure and are used to report results of retrievals of spectra received from the L1B subsystem. The VMR data for the particular species of interest is the primary data element of each swath data layer. It is accompanied by various indices of error that help in evaluating the quality of the retrieval.

Table 4-4.3: Primary Data Dimensions Definitions

Dimension Name	Valid Value (Description)
nLevels	88 pressure levels
nTimes	Constant for each Global Survey, can vary for Special Observation runs.

Table 4-4.4: Nadir Primary Data Fields

Data Field Name / Title *	Data Descriptions	Units	Data Range	Size	Type	HDF-EOS 5 Type
[species]	VMR data or temperature data	VMR or				
	(dim nLevels x nTimes)	K		32	float	NATIVE_FLOAT
[species]Precision	Square-roots of diagonal elements the measurement error covariance	ofVMR or K		32	float	NATIVE_FLOAT
	(dim nLevels x nTimes)					_
TotalError	Square-roots of diagonal elements the output total error covariance (includes smoothing error, systematic error, and measurement error)	K		32	float	NATIVE_FLOAT
	(dim nLevels x nTimes)					
[species]VerticalResolution	Estimate of vertical resolution using the FWHM of averaging kernels	km		32	float	NATIVE_FLOAT
	(dim nLevels x nTimes)					
ConstraintVector	Constraint vector used in the	VMR or				
	retrieval	K		32	float	NATIVE_FLOAT
	(dim nLevels x nTimes)					_
AveragingKernel	Retrieval sensitivity	N/A		32		
	(dim nLevels x nLevels x nTimes)				float	NATIVE_FLOAT

4

Data Field Name / Title *	Data Descriptions	Units	Data Range	Size	Type	HDF-EOS 5 Type
TotalErrorCovariance	Sum of measurement, systematic,	VMR^2 or		32		
	and smoothing error covariances	K^2			float	NATIVE FLOAT
	(dim nLevels x nLevels x nTimes)					_
MeasurementErrorCovariance	Propagated measured radiance	VMR^2 or K^2		32		
	noise				float	NATIVE FLOAT
	(dim nLevels x nLevels x nTimes)					_
SystematicErrorCovariance	Propagated retrieval systematic	VMR^2 or K^2		32	float	NATIVE_FLOAT
	errors					
	(dim nLevels x nLevels x nTimes)					

^{*} Where [species] equals H2O, O3, CH4, CO, or Temperature

Ideally, species and associated precision and quality measures will be populated for all Target Scenes in the global survey. However, there will be times where completing retrievals will not be possible. The causes will be varied and might be due to bad spectra (based on evaluation by L1B), excessive cloud cover, or the retrieval was not performed for scheduling or other administrative reasons. Regardless of the cause for missing data, certain swath data fields will be set to a fill value according HDF-EOS Aura File Format Guidelines. Additionally, cloud cover may prevent retrieval down to the Earth's surface, resulting in partial retrievals. When such cases occur, pressure layers will contain fill values when no data exists.

4.5.2Nadir Associated Data Fields

The table below provides the associated data dimensions. The data items shown in the following tables are also included in the Swath Data as Associated Data:

Table 4-4.5: Associated Data Field Dimensions Definitions

Dimension Name	Valid Value (Description)
nTimes	Constant for each Global Survey, can vary for Special Observations

Table 4-4.6: Nadir Associated Data Fields

Data Fields Name / Title	Data Description	Units	Data Range	Size	Type	HDF-EOS 5 Type
Scan_Averaged_Count	Number of scans averaged into a single target scene (dim nTimes)	N/A	1-40	8	int	NATIVE_INT8
CloudTopHeight	Elevation of inferred cloud top (speci independent) (dim nTimes)	esMeters	0 - 70,000	32	float	NATIVE_FLOAT
CloudTopPressure	Pressure of inferred cloud top (specie independent) (dim nTimes)	s hPa	1300.0 - 0.001	32	float	NATIVE_FLOAT
SurfaceTemperature	Retrieved surface temperature (specie independent) (dim nTimes)	es K	150.0 - 350	32	float	NATIVE_FLOAT
SurfaceTempError	Error in retrieved surface temperature (species independent) (dim nTimes)	K	0.0 – 20.0	32	float	NATIVE_FLOAT
TotalColumnDensity	Total column amount computed from the retrieved profile (dim nTimes)	Molec/cm ²	0 – 10^28	32	float	NATIVE_FLOAT
TotalColumnDensityError	Error in total column amount computed from total error covariance (dim nTimes)	Molec/cm ²	0 – 10^28	32	float	NATIVE_FLOAT
SpeciesRetrievalConverged	Indicates whether the non-linear least squares solver converged to a minimum.	N/A	0 or 1 (Boolean)	8	int	NATIVE_INT8
	True=1, False=0 (dim nTimes)					

5

Data Fields Name / Title	Data Description	Units	Data Range	Size	Type	HDF-EOS 5 Type
DeviationVsRetrievalCovariano	e Deviation vs. Retrieval Covariance (dim nTimes)		0.0 - 10000.0	32	float	NATIVE_FLOAT
RadianceResidualMean	Mean of the model and data radiance difference (per species). (dim nTimes)		-1000.0 - 1000.0	32	float	NATIVE_FLOAT
RadianceResidualRMS	RMS of model and data difference (dim nTimes)		0.0 – 100.0	32	float	NATIVE_FLOAT
RadianceResidualMax	Maximum absolute difference between model and data (dim nTimes)	n	-10000.0 - 10000.0	32	float	NATIVE_FLOAT
NumberIterPerformed	Actual number of iterations performe (dim nTimes)	d Integer	Small number, typically < 8 and could be 0	8	int	NATIVE_INT8
MaxNumIterations	Maximum number of iterations allow for convergence (dim nTimes)	edN/A	<100	8	int	NATIVE_INT8
DegreesOfFreedomForSignal	Number of independent parameters for the profile (trace of the averaging kernel) (dim nTimes)	N/A	0.0— 1000.0	32	float	NATIVE_FLOAT
InformationContent	Relative decrease in error volume with respect to a priori (dim nTimes)	N/A	-100.0— 1000.0	32	float	NATIVE_FLOAT

4.6Limb Data Fields

Like the Nadir Data Fields, the Limb Data Fields consist of the primary data fields, which are VMR or temperature profiles and other data dimensioned by time and pressure levels, and the associated data fields, which are only dimensioned by time.

Each Data Field will be annotated using HDF-EOS Local Attributes which are listed in the table below. Data Field Attributes are a feature which can be useful in annotating plots as well as describing the data product to input routines. These attributes will be set via calls to he5_swwrlattr (HE5_SWwritelocattr for C users).

Attribute Name	Attribute Description	Size	Type	HDF-EOS 5 Type
MissingValue	Contains the value for missing data. 32 float: -999.0 64 double: -999.0 32 int : -999 8 int : -99			Same type as Data Field
Title	For labeling a plot or axis.		char	NATIVE_CHAR
Units	Labeling units (for labeling color bars, converting between units, etc).		char	NATIVE_CHAR
UniqueFieldDefinition	Describes if definition of field is shared with other Aura Instruments ("Aura-Shared", "X-Specific", where X=Instrument Name, "X-Y[-Z]-Shared" where X,Y, and optional Z are instrumentames (in alphabetical order)		char	NATIVE_CHAR

The values used for these attributes are also in the data fields tables below.

4.6.1Limb Primary Data Fields

All swath data fields are based on a unified data structure and are used to report results of retrievals of spectra received from the L1B subsystem. The VMR data for the particular species of interest is the primary data element of each swath data layer. It is accompanied by various indices of error that help in evaluating the quality of the retrieval.

Ideally, species and associated precision and quality measures will be populated for all Target Scenes in the global survey. However, there will be times where completing retrievals will not be possible. The causes will be varied and might be due to bad spectra (based on evaluation by L1B), excessive cloud cover, or the retrieval was not performed for scheduling or other administrative reasons. Regardless of the cause for missing data, certain swath data fields will be set to a fill value according HDF-EOS Aura File Format Guidelines. Additionally, cloud cover may prevent retrieval down to the Earth's surface, resulting in partial retrievals. When such cases occur, pressure layers will contain fill values when no data exists.

Table 4-4.7: Primary Data Fields Dimensions Definitions

Dimension Name	Valid Value (Description)
nLevels	88 pressure levels
nTimes	Constant for each Global Survey, can vary for Special
	Observation runs.

Table 4-4.8: Limb Primary Data Fields

Data Field Name / Title *	Data Descriptions	Units	Data Range	Size	Type	HDF-EOS 5 Type
[species]	VMR data or temperature data (for retrieved temperature)	VMR or K		32	float	NATIVE FLOAT
	(dim nLevels x nTimes)					_
[species]Precision	Square-roots of diagonal elements of the measurement error covariance	VMR or K		32	float	NATIVE_FLOAT
	(dim nLevels x nTimes)					
TotalError	Square-roots of diagonal elements of the output total error covariance (includes smoothing error, systemat error, and measurement error)	K		32	float	NATIVE_FLOAT
	(dim nLevels x nTimes)					
[species]VerticalResolution	Estimate of vertical resolution using the FWHM of averaging kernels	km		32	float	NATIVE_FLOAT
	(dim nLevels x nTimes)					
ConstraintVector	Constraint vector used in the	VMR or				
	retrieval (dim nLevels x nTimes)	K		32	float	NATIVE_FLOAT
AveragingKernel	Retrieval sensitivity	N/A		32		
	(dim nLevels x nLevels x nTimes)				float	NATIVE_FLOAT
TotalErrorCovariance	Sum of measurement, systematic,	VMR^2 or		32		
	and smoothing error covariances	K^2			float	NATIVE_FLOAT
	(dim nLevels x nLevels x nTimes)					
MeasurementErrorCovariance	Propagated measured radiance noise	VMR^2 or		32		
	(dim nLevels x nLevels x nTimes)	K^2			float	NATIVE_FLOAT
SystematicErrorCovariance	Propagated retrieval systematic	VMR^2 or		32	float	NATIVE_FLOAT
SystematicEndicovariance	errors	K^2		32	noat	NATIVE_FLOAT
	(dim nLevels x nLevels x nTimes)	IX Z				
	O2 CH4 CO NO2 HNO2 T		•	•	•	•

^{*} Where [species] equals H2O, O3, CH4, CO, NO2, HNO3, or Temperature

4-

7

4.6.2Limb Associated Data Fields

The table below provides the associated data dimensions. The data items shown in the following tables are also included in the Swath Data as Associated Data:

Table 4-4.9: Associated Data Field Dimensions Definitions

Dimension Name	Valid Value (Description)
nTimes	Constant for each Global Survey, can vary for Special Observation runs.

Table 4-4.10: Limb Associated Data Fields

Data Fields Name / Title	Data Description	Units	Data Range	Size	Type	HDF-EOS 5 Type
CloudTopHeight	Elevation of inferred cloud top (speci- independent) (dim nTimes)	esMeters	0 – 70,000	32	float	NATIVE_FLOAT
CloudTopPressure	Pressure of inferred cloud top (species independent) (dim nTimes)	s hPa	1300.0 - 0.001	32	float	NATIVE_FLOAT
TotalColumnDensity	Total column amount computed from the retrieved profile (dim nTimes)	Molec/cm ²	0 – 10^28	32	float	NATIVE_FLOAT
TotalColumnDensityError	Error in total column amount computed from total error covariance (dim nTimes)	Molec/cm ²	0 – 10^28	32	float	NATIVE_FLOAT
SpeciesRetrievalConverged	Indicates whether the non-linear least squares solver converged to a minimum. True=1, False=0 (dim nTimes)		0 or 1 (Boolean)	8	int	NATIVE_INT8
DeviationVsRetrievalCovariance	e Deviation vs. Retrieval Covariance (dim nTimes)		0.0 - 10000.0	32	float	NATIVE_FLOAT
RadianceResidualMean	Mean of the model and data radiance difference (per species). (dim nTimes)		-1000.0 - 1000.0	32	float	NATIVE_FLOAT
RadianceResidualRMS	RMS of model and data difference (dim nTimes)		0.0 - 100.0	32	float	NATIVE_FLOAT
RadianceResidualMax	Maximum absolute difference betwee model and data (dim nTimes)	n	-10000.0 - 10000.0	32	float	NATIVE_FLOAT
NumberIterPerformed	Actual number of iterations performe (dim nTimes)	d Integer	Small number, typically < 8 and could be 0		int	NATIVE_INT8
MaxNumIterations	Maximum number of iterations allow for convergence (dim nTimes)	ed	< 100	8	int	NATIVE_INT8
DegreesOfFreedomForSignal	Number of independent parameters for the profile (trace of the averaging kernel) (dim nTimes)	N/A	0.0— 1000.0	32	float	NATIVE_FLOAT
InformationContent	Relative decrease in error volume with respect to a priori (dim nTimes)	N/A	-100.0— 1000.0	32	float	NATIVE_FLOAT

4.7Ancillary Data Fields

The Ancillary ESDT contains the Associated Data Fields common to all species that were not included in the individual species files. One Ancillary ESDT will be created for each global survey.

Each Data Field will be annotated using HDF-EOS Local Attributes which are listed in the table below. Data Field Attributes are a feature which can be useful in annotating plots as well as describing the data product to input routines. These attributes will be set via calls to he5 swwrlattr (HE5 SWwritelocattr for C users).

Attribute Name	Attribute Description	Size	Type	HDF-EOS 5 Type
MissingValue	Contains the value for missing data. 32 float: -999.0 64 double: -999.0 32 int : -999 8 int : -99			Same type as Data Field
Title	For labeling a plot or axis.		char	NATIVE_CHAR
Units	Labeling units (for labeling color bars, converting between units, etc).		char	NATIVE_CHAR
UniqueFieldDefinition	Describes if definition of field is shared with other Aura Instruments ("Aura-Shared", "X-Specific", where X=Instrument Name, "X-Y[-Z]-Shared" where X,Y, and optional Z are instrumenames (in alphabetical order)		char	NATIVE_CHAR

The values used for these attributes are also in the data fields tables below.

Each Ancillary ESDT will consist of four Ancillary Data swaths, Nadir, Limb 1, Limb 2, and Limb 3. Each Ancillary Data swath will contain the following data items:

Table 4-4.11: Ancillary Data Dimensions Definitions

Dimension Name	Valid Value (Description)
nTimes	1152 observation sets (in a Global Survey)
nFreq	103 frequencies
nLevels	88 pressure levels

Table 4-4.12: Ancillary Nadir Data Fields

Ancillary Data Fields / Title	Data Description	Units	Data Range	Size	Type	HDF-EOS 5 Type
CloudCover	0=clear, 1=thin, 2=opaque		0-2	8	int	NATIVE_INT8
	(dim nTimes)					
SpacecraftLatitude	Geodetic latitude referenced to WGS84 ellipsoid	degrees	± 90.0	32	float	NATIVE_FLOAT
	(dim nTimes)					
SpacecraftLongitude	Longitude referenced to WGS84 ellipsoid	degrees	± 180.0	32	float	NATIVE_FLOAT
	(dim nTimes)					
SpacecraftAltitude	Height referenced to WGS84 ellipsoid	meters		32	float	NATIVE_FLOAT
	(dim nTimes)					

9

Ancillary Data Fields / Title Data Description Units Data Range Size Type HDF-EOS 5 Type NATIVE INT8 OrbitAscendingFlag True=1, False=0 0 or 1 (Boolean) 8 int (dim nTimes) Solar azimuth angle relative to the local 32 NATIVE_FLOAT SolarAzimuthAngle degrees float north at the geolocation. (From geolocation table) (dim nTimes) PixelsUsedFlag True=1, False=0 64 chars, one 520 NATIVE CHAR for each pixel (dim nTimes) Wavenumber array corresponding to 600.0 - 3500.0EmissivityWavenumber cm^{-1} 32 float NATIVE_FLOAT retrieval emissivity points (applies to Nadir only) (dim nFreq x nTimes) LandSurfaceEmissivity Retrieved surface emissivity for land 0.0 - 2.032 NATIVE FLOAT float nadir targets. Fill values for scenes where emissivity not retrieved. (dim nFreq x nTimes) LandSurfaceEmissErrors Errors in retrieved surface emissivity for 32 NATIVE FLOAT float land nadir targets. Fill values for scenes where emissivity not retrieved. (dim nFreq x nTimes) T H2OCovariance Error covariance terms for joint K*VMR -4.0 - 4.032 NATIVE_FLOAT float temperature and water retrieval (dim nLevels x nLevels x nTimes) Averaging kernel terms for joint -10.0 - 10.0NATIVE FLOAT T_H2OAveragingKernel N/A 32 float temperature and water retrieval (influence of T on H2O) (dim nLevels x nLevels x nTimes) Averaging kernel terms for joint -10.0 - 10.0NATIVE FLOAT H2O_TAveragingKernel N/A 32 float temperature and water retrieval (influence of H2O on T) (dim nLevels x nLevels x nTimes) Filter_Position_1A Filter position for Focal Plane 1A N/A 1-5 8 NATIVE_INT8 int 1-2 Filter_Position_1B Filter position for Focal Plane 1B N/A 8 NATIVE INT8 int Filter Position 2A Filter position for Focal Plane 2A N/A 1-4 8 NATIVE INT8 int Filter position for Focal Plane 2B 8 Filter Position 2B N/A int NATIVE INT8

Table 4-4.13: Ancillary Limb Data Fields

Ancillary Data Fields / Title	Data Description	Units	Data Range	Size	Type	HDF-EOS 5 Type
CloudCover	0=clear, 1=thin, 2=opaque		0-2	8	int	NATIVE_INT8
	(dim nTimes)					
SpacecraftLatitude	Geodetic latitude referenced to WGS84 ellipsoid	degrees	± 90.0	32	float	NATIVE_FLOAT
	(dim nTimes)					
SpacecraftLongitude	Longitude referenced to WGS84 ellipsoid	degrees	± 180.0	32	float	NATIVE_FLOAT
	(dim nTimes)					
SpacecraftAltitude	Height referenced to WGS84 ellipsoid	meters		32	float	NATIVE_FLOAT
	(dim nTimes)					
OrbitAscendingFlag	True=1, False=0		0 or 1 (Boolean)	8	int	NATIVE_INT8
	(dim nTimes)					
SolarAzimuthAngle	Solar azimuth angle relative to local north at the spacecraft.	degrees		32	float	NATIVE_FLOAT
	(dim nTimes)					
PixelsUsedFlag	True=1, False=0		64 chars, one for	520	char	NATIVE_CHAR
	(dim nTimes)		each pixel			

Data Range Ancillary Data Fields / Title Data Description Units Size Type HDF-EOS 5 Type NATIVE FLOAT RetrievedPointingAngle Retrieved value of the boresight nadir degrees 32 float angles using TES limb spectral radiances. (Limb only) (dim nTimes) Retrieved Pointing Angle ErrorError of retrieved value of the boresight nadirdegrees 32 float NATIVE FLOAT angles using TES limb spectral radiances. (Limb only) (dim nTimes) K*VMR NATIVE FLOAT T H2OCovariance Error covariance terms for joint -4.0 - 4.032 float temperature and water retrieval (dim nLevels x nLevels x nTimes) T_H2OAveragingKernel Averaging kernel terms for joint N/A -10.0 - 10.032 NATIVE_FLOAT float temperature and water retrieval (influence of T on H2O) (dim nLevels x nLevels x nTimes) Averaging kernel terms for joint NATIVE FLOAT H2O TAveragingKernel N/A -10.0 - 10.032 float temperature and water retrieval (influence of H2O on T) (dim nLevels x nLevels x nTimes) Filter Position 1A Filter position for Focal Plane 1A N/A 1-5 8 int NATIVE INT8 1-2 Filter Position 1B Filter position for Focal Plane 1B N/A 8 int NATIVE INT8 Filter_Position_2A Filter position for Focal Plane 2A N/A 1-4 8 NATIVE_INT8 int Filter Position 2B Filter position for Focal Plane 2B 1 8 NATIVE INT8 N/A int

4.8Geolocation Fields

The Geolocation Data is used to provide generic geolocation and spacecraft pointing information. This information is included with each species specific ESDT and copied identically into the Ancillary ESDT.

Each Data Field will be annotated using HDF-EOS Local Attributes which are listed in the table below. Data Field Attributes are a feature which can be useful in annotating plots as well as describing the data product to input routines. These attributes will be set via calls to he5_swwrlattr (HE5_SWwritelocattr for C users).

Attribute Name	Attribute Description	Size	Type	HDF-EOS 5 Type
MissingValue	Contains the value for missing data. 32 float: -999.0 64 double: -999.0 32 int : -999 8 int : -99			Same type as Data Field
Title	For labeling a plot or axis.		char	NATIVE_CHAR
Units	Labeling units (for labeling color bars, converting between units, etc).		char	NATIVE_CHAR
UniqueFieldDefinition	Describes if definition of field is shared with other Aura Instruments ("Aura-Shared", "X-Specific", where X=Instrument Name, "X-Y[-Z]-Shared" where X,Y, and optional Z are instrumen names (in alphabetical order)		char	NATIVE_CHAR

The values used for these attributes are also in the data fields tables below.

Each Nadir-viewing species specific ESDT will have one swath containing the Nadir geolocation items below. Each Limb-viewing species specific ESDT will have three swaths containing the Limb 1, Limb 2, and Limb 3 geolocation items below.

Each Ancillary ESDT will consist of four Ancillary Data swaths, Nadir, Limb 1, Limb 2, and Limb 3. Each Ancillary Data swath will contain the following geolocation data items:

Table 4-4.14: Geolocation Dimensions

Dimension Name	Valid Value (Description)
nTimes	Constant for each Global Survey, can vary for Special Observation
nLevels	88 pressure levels
nUARSlevels	87 standard UARS levels

Table 4-4.15: Nadir Geolocation Fields

Geolocation Fields Name / Title	Data Description	Units	Data Range	Size	Type	HDF-EOS 5 Type
Time	Time (TAI93) of ZPD (Zero Path Difference)	sec		64	double	NATIVE_DOUBLE
	(dim nTimes)					
Latitude	Geodetic Latitude (dim nTimes)	Decimal degrees	± 90.0	32	float	NATIVE_FLOAT
Longitude	Geodetic Longitude (dim nTimes)	Decimal degrees	± 180.0	32	float	NATIVE_FLOAT
SurfacePressure	From met & DEM data or Cloud Top (dim nTimes)	hPa		32	float	NATIVE_FLOAT
SurfaceElevation	From DEM, average elevation over footprint (dim nTimes)	meters		32	float	NATIVE_FLOAT
SurfaceElevStandardDeviation	From DEM, standard deviation of average elevation over footprint (dim nTimes)	meters		32	float	NATIVE_FLOAT
BoresightNadirAngle	TES boresight (LOS) nadir angle relative to the local nadir at SC	Decimal degrees	090	64	double	NATIVE_DOUBLE
BoresightNadirAngleUnc	(dim nTimes) Uncertainty in TES boresight nadir angle (dim nTimes)	Decimal degrees	±90	64	double	NATIVE_DOUBLE
BoresightAzimuth	TES boresight (LOS) azimuth angle relative to the local north at SC	Decimal degrees	0360	64	double	NATIVE_DOUBLE
SolarZenithAngle	(dim nTimes) Solar zenith relative to the local zenith at the spacecraft (dim nTimes)	degrees	0180	64	double	NATIVE_DOUBLE
LocalSolarTime	Local solar time at target geolocation. Computed from target longitude and UTC.	hours		32	float	NATIVE_FLOAT
Tgt_SpacecraftZenith	(dim nTimes) TES boresight (LOS) zenith angle relative to the local zenith at the target geolocation.	degrees	±90	32	float	NATIVE_FLOAT
Tgt_SpacecraftAzimuth	(dim nTimes) TES boresight (LOS) azimuth angle relative to the local north at the target geolocation. (dim nTimes)	degrees (ea of north)	st±90	32	float	NATIVE_FLOAT

Geolocation Fields Name / Title	Data Description	Units	Data Range	Size	Type	HDF-EOS 5 Type
Latitude Footprint 1 Latitude Footprint 2	Geo-location in geodetic co- ordinates of the four corners of the	Decimal degrees	±90	64	double	NATIVE_DOUBLE
Latitude Footprint 3 Latitude Footprint 4	footprint. Nadir footprint determined by field of view of	Decimal degrees	±90	64	double	NATIVE_DOUBLE
Lantude_Pootprint_4	pixels. Limb footprint is ±60 km track, ±12 km crosstrack from	Decimal degrees	±90	64	double	NATIVE_DOUBLE
	surface expression of boresight	Decimal degrees	±90	64	double	NATIVE_DOUBLE
Longitude Footprint 1 Longitude Footprint 2	Geo-location in geodetic co- ordinates of the four corners of the	Decimal degrees	±180	64	double	NATIVE_DOUBLE
Longitude Footprint 3 Longitude Footprint 4	footprint. Nadir footprint determined by field of view of	Decimal degrees	±180	64	double	NATIVE_DOUBLE
Longitude_Footprint_4	pixels. Limb footprint is ±60 km track, ±12 km crosstrack from surface expression of boresight tangent point Longitude_Footprint_1=LowerLeft Longitude_Footprint_2=LowerRight Longitude_Footprint_3=UpperRight Longitude_Footprint_4=UpperLeft (dim nTimes)	Decimal degrees	±180	64	double	NATIVE_DOUBLE
		Decimal degrees	±180	64	double	NATIVE_DOUBLE
Pressure	List of the 87 Pressure Levels used (dim nUARSlevels)	hPa	0.001-1300.	0 32	float	NATIVE_FLOAT
Altitude	Derived altitude for each pressure level (dim nUARSlevels x nTimes)	meters	0-70000	32	float	NATIVE_FLOAT

Table 4-4.16: Limb Geolocation Fields

Geolocation Fields Name / Title	Data Description	Units	Data Range	Size	Type	HDF-EOS 5 Type
Time	Time (TAI93) of ZPD (Zero Path Difference)	sec		64	double	NATIVE_DOUBLE
	(dim nTimes)					
Latitude	Geodetic Latitude	degrees	± 90.0	32	float	NATIVE_FLOAT
	(dim nTimes)					
Longitude	Geodetic Longitude	degrees	± 180.0	32	float	NATIVE_FLOAT
	(dim nTimes)					
SurfacePressure	From met & DEM or Cloud Top	hPa		32	float	NATIVE_FLOAT
	(dim nTimes)					
SurfaceElevation	From DEM, average elevation over footprint	meters		32	float	NATIVE_FLOAT
	(dim nTimes)					
SurfaceElevStandardDeviation	From DEM, standard deviation of average elevation over footprint	meters		32	float	NATIVE_FLOAT
	(dim nTimes)					

Geolocation Fields Name / Title	Data Description	Units	Data Range	Size	Type	HDF-EOS 5 Type
BoresightNadirAngle	TES boresight (LOS) nadir angle relative to local nadir at SC (dim nTimes)	Decimal degrees	0180	64	double	NATIVE_DOUBLE
BoresightNadirAngleUnc	Uncertainty in TES boresight nadir angle (dim nTimes)	Decimal degrees	±90	64	double	NATIVE_DOUBLE
BoresightTangentHeight	Geodetic elevation of instrument boresight at the tangent point (around 16 km)	meters		32	float	NATIVE_FLOAT
BoresightTangentHeightUnc	(dim nTimes) TES Boresight Tangent Height uncertainty (dim nTimes)	meters		32	float	NATIVE_FLOAT
BoresightAzimuth	TES boresight (LOS) azimuth angle relative to local north at SC (dim nTimes)	Decimal degrees	0360	64	double	NATIVE_DOUBLE
SolarZenithAngle	Solar zenith relative to the local zenith at the spacecraft (dim nTimes)	degrees		64	double	NATIVE_DOUBLE
LocalSolarTime	Local solar time at target geolocation. Computed from target longitude and UTC.	hours		32	float	NATIVE_FLOAT
Tgt_SpacecraftZenith	(dim nTimes) TES boresight (LOS) zenith angle relative to the local zenith at the target geolocation. (dim nTimes)	degrees	±90	32	float	NATIVE_FLOAT
Tgt_SpacecraftAzimuth	TES boresight (LOS) azimuth angle relative to the local north at the target geolocation. (dim nTimes)	degrees (ea of north)	as±90	32	float	NATIVE_FLOAT
Latitude Footprint 1 Latitude Footprint 2	Geo-location in geodetic co- ordinates of the four corners of the footprint. Nadir footprint	Decimal degrees	±90	64	double	NATIVE_DOUBLE
Latitude_Footprint_4 Latitude_Footprint_4	determined by field of view of pixels. Limb footprint is ±60 km	Decimal degrees	±90	64	double	NATIVE_DOUBLE
	track, ±12 km crosstrack from surface expression of boresight	Decimal degrees	±90	64	double	NATIVE_DOUBLE
	tangent point. Latitude_Footprint_1=LowerLeft Latitude_Footprint_2=LowerRight Latitude_Footprint_3=UpperRight Latitude_Footprint_4=UpperLeft (dim nTimes)	Decimal degrees	±90	64	double	NATIVE_DOUBLE
Longitude_Footprint_1 Longitude Footprint 2	Geo-location in geodetic co- ordinates of the four corners of the	Decimal degrees	±180	64	double	NATIVE_DOUBLE
Longitude Footprint 2 Longitude Footprint 3 Longitude Footprint 4	footprint. Nadir footprint determined by field of view of	Decimal degrees	±180	64	double	NATIVE_DOUBLE
Longitude_Footprint_4	pixels. Limb footprint is ±60 km track, ±12 km crosstrack from	Decimal degrees	±180	64	double	NATIVE_DOUBLE
	surface expression of boresight tangent point Longitude_Footprint_1=LowerLeft Longitude_Footprint_2=LowerRight Longitude_Footprint_3=UpperRight Longitude_Footprint_4=UpperLeft (dim nTimes)	Decimal degrees	±180	64	double	NATIVE_DOUBLE
Pressure	List of the 87 Pressure Levels used (dim nUARSlevels)	hPa	0.001-1300.	0 32	float	NATIVE_FLOAT
Altitude	Derived altitude for each pressure level (dim nUARSlevels x nTimes)	meters	0-70000	32	float	NATIVE_FLOAT

4.9L2 ECS and TES-specific Metadata

4.9.1Introduction

As with all ESDTs, TES ESDTs contain metadata that describes specific attributes about the data or the quality of data contained in the ESDT. Some of the basic metadata items are required by EOSDIS. These data items commonly include basic identification information and other generic information about the particular ESDT. These data items are referred to as ECS Inventory Metadata. In addition to ECS Inventory Metadata, additional TES ESDTs contain additional metadata more specific to the TES program. The TES-specific metadata has been subdivided into four subcategories based on the uniqueness of its origin and identification:

1. Production History Production History Metadata

TES-Common
 TES-L2-Common
 Metadata common to all TES ESDTs
 Metadata common to all Level 2 ESDTs
 TES-L2-observation specific
 Metadata unique to a particular ESDT subtype.

TES common metadata are fairly generic to the entire family of TES ESDTs or to TES L2 products. TES-L2-observation specific, as described by name, are unique to a particular family of L2 ESDTs.

4.9.2ECS Inventory Metadata

The table below shows the ECS Inventory Metadata. The ECS Inventory Metadata is implemented in the HDF file as text block named coremetadata within a group named HDFEOS INFORMATION.

Data Layer Name	Data Description	TES Valids	Type ²	Source
AssociatedInstrumentShortName	Instrument short name supplied by TES project.	TES	VA20	MCF
AssociatedPlatformShortName	Platform short name supplied by EOS project.	Aura	VA20	MCF
AssociatedSensorShortName	Sensor short name supplied by TES project.	FTS	VA20	MCF
OperationMode	Mode of operation of the instrument.	Calibration Routine	VA20	MCF
ShortName	This name will identify the ESDT short name associated with the collection or granule.	(set in MCF)	A8	MCF
VersionID	Version identifier of the ESDT data collection.	(set in MCF)	SI	MCF
ProductionDateTime	The date and time a specific granule was produced by a PGE.	YYYY-MM-DDT HH:MM:SS.SSSZ	DT	TK
SizeMBECSDataGranule	The size attribute will indicate the volume of data contained in the granule.		F10	DSS
LocalGranuleID	Unique identifier for locally produced granule that ECS ingests and is required to capture.	e.g., TES-Aura_L2- H2O- Nadir_r0000000001 01	VA80	PGE
LocalVersionID	Local version identifier for PGE defined granule versions. Takes the form "executable name: Clearcase label"		VA60	PGE
InputPointer	Description of location of Production History information.	"Production History block at: / HDFEOS/ADDITIO NAL/FILE_ATTRI BUTES/PRODUCT ION HISTORY"		PGE
ParameterName	Scope of quality flags. For TES, refers to entire granule.	Granule	A40	PGE

Table 4-4.17: ECS Inventory Metadata

² Data types and Sources given are specified in document [3] on page 1-1.

Data Layer Name	Data Description	TES Valids	Туре	Source
ScienceQualityFlag	The granule level flag applying generally to the granule and specifically to parameters at the granul level.	lly to the at the granule Failed Being Investigated Not Investigated Inferred Passed Inferred Failed Suspect		DP
ScienceQualityFlagExplanation	A text explanation of the criteria used to set the ScienceQualityFlag including thresholds or other criteria.	(Free text)	VA255	DP
RangeBeginningDate	The year, month, and day when the temporal coverage period being described began.	YYYY-MM-DD	DT	PGE
RangeBeginningTime	The first hour, minute, and second of the temporal coverage period being described.	HH:MM:SS	T	PGE
RangeEndingDate	The last year, month, and day when the temporal coverage period being described.	YYYY-MM-DD	DT	PGE
RangeEndingTime	The last hour, minute, and second of the temporal coverage period being described.	HH:MM:SS	T	PGE
PGEVersion	The Release of the PGE software: e.g. "R6.1"		A10	PGE

4.9.3 Production History Metadata

The Production History Metadata is implemented as a single text block and written to the HDF file as a file level attribute. The Production History text block contains information about the L2 PGE and the running execution of the PGE to produce ESDT standard products. Static information in the text block describes the elements that make up the PGE like build configuration, support files and database table population. Dynamic information describes all the running parameters involved in a PGE execution for a specific RUN ID. This information is captured for both pre and post execution of the L2 Product PGE.

History Data Data Description Size (K) State ECS Toolkit file for input/output file specification Dynamic Environment Variable 5 SIPS environment variables Dynamic Fetch SIPS fetch list from archived 5 Dynamic SIPS PCF SIPS-specific PCF file for PGE processing 3 Dynamic 5 Workspace List (PRE) File listing in SIPS PGE workspace prior to PGE execution Dynamic Workspace List (POST) File listing in SIPS PGE workspace following PGE execution 5 Dynamic 0.1 Runtime CPU and Wallclock PGE run time Dynamic Framework Parameter Definition File for output files Control Definition Static 1 0.02 Framework Parameter Specification File for output files Control Parameter Static Control Parameter (Runtime) Framework Parameter specified in the command line of the PGE 0.02 Dynamic RUN ID begin date and end date timestamp 0.05 TimeStamp Dynamic README README file that describes production history context Static 0.2 PGE Version PGE version information Static PGE specific configurations TBD TBD TBD

Table 4-4.18: L2 Production History

4.9.4TES-Common Metadata

Metadata shown below is common to all TES files. For Level 2, these are implemented as File Level Attributes (HDF-EOS Global File Attributes). This is information that helps to describe this particular data set. It can be useful in labeling plots, calculating dates, etc.. These will be set via calls to he5_ehwrglatt(HE5_EHwriteglbattr for C users).

Table 4-4.19: TES-Common-Metadata

Data Layer Name	Data Description	Valids	Size	Type	HDF-EOS 5 Type	Source
InstrumentName	TES			char	NATIVE_CHAR	MCF

Data Layer Name	Data Description	Valids	Size	Type	HDF-EOS 5 Type	Source
ProcessLevel	L1B,L2,L3,etc.			char	NATIVE_CHAR	MCF
TAI93AtOzOfGranule				double	NATIVE_DOUBLE	PGE
GlobalSurveyNumber/ID	Run ID			int	NATIVE_INT	PGE
GranuleMonth	Month granule was produced (from ECS MD RangeBeginningDate)	1-12	8	int	NATIVE_INT	PGE
GranuleDay	Day granule was produced (from ECS MD RangeBeginningDate)	1-31	8	int	NATIVE_INT	PGE
GranuleYear	Year granule was produced (from ECS MD RangeBeginningDate)			int	NATIVE_INT	PGE
SurveyMode	Type of survey, e.g., Global or Special			char	NATIVE_CHAR	MCF
PGEVersion	Release of PGE Software: e.g. "R6.1"			char	NATIVE_CHAR	MCF

4.9.5TES-L2-Common

Metadata shown below is common to all TES L2 files. These are implemented as Swath Level Attributes (HDF-EOS Group Attributes). This is information which helps describe the swath to which it is attached. These will be set via calls to he5 swwrattr (HE5 SWwriteattr for C users).

Table 4-4.20: TES-L2-Common-Metadata

Data Layer Name	Data Description	Data Range	Size	Type	HDF-EOS 5 Type
Pressure	Dimensioned over nUARSLevels		32	float	NATIVE_FLOAT
	only				
VerticalCoordinate	"Pressure", "Altitude", "Potential Temperature"			char	NATIVE_CHAR

4.9.6TES-L2-Nadir Metadata

Metadata shown below are common to all TES L2 Nadir files. These are implemented as Swath Level Attributes (HDF-EOS Group Attributes) attached to the NadirSwath groups. This is information which helps describe the swath to which it is attached. These will be set via calls to he5 swwrattr (HE5 SWwriteattr for C users).

Table 4-4.21: TES-L2-Nadir-Metadata

Data Layer Name	Definition	Data Range	Size	Type	HDF-EOS 5 Type
Scan_Resolution	Designates Low or High Resolution for this view	'High', 'Low		char	NATIVE_CHAR

4.9.7TES-L2-Limb Metadata

Metadata shown below are common to all TES L2 Limb files. These are implemented as Swath Level Attributes (HDF-EOS Group Attributes) attached to the Limb1Swath group. This is information which helps describe the swath to which it is attached. These will be set via calls to he5 swwrattr (HE5 SWwriteattr for C users).

Table 4-4.22: TES-L2-Limb1-Metadata

Data Layer Name	Definition	Data Range	Size	Type	HDF-EOS 5 Type
Scan_Resolution	Designates Low or High	'High', 'Low		char	NATIVE_CHAR
	Resolution for this view				

4.9.8TES-L2-Ancillary Metadata

TBD.

APPENDIX A -- ACRONYMS

API Application Program Interface

BB Black Body

DEM Digital Elevation Model
DPS Data Products Specification
ECI Earth-Centered Inertial
ECS EOSDIS Core System
EOS Earth Observation System

EOSDIS EOS Data and Information System

ESDIS Earth Science Data and Information System

ESDT Earth Science Data Type

FP Focal Plane

FWHM Full Width at Half Maximum

GDS Ground Data System

HAIS Hughes Applied Information Systems

HDF Hierarchical Data Format
ICD Interface Control Document
ICS Interferometer Control System

ID Identification

JPL Jet Propulsion Laboratory

LOS Line of Sight

MCF Metadata Control File

MD Metadata

NCAR
National Center for Atmospheric Research
NESR
Noise-Equivalent Spectral Radiance
OSE
Operational Support Equipment
OSP
Operational Support Product
PCS
Position Control System
PGE
Product Generation Executive
PRT
Platinum Resistance Thermistor

RMS Root-Mean-Square

SC Spacecraft

SIPS Science Investigator-led Processing System

TAI International Atomic Time

TBD To Be Determined

TES Tropospheric Emission Spectrometer UARS Upper Atmosphere Research Satellite

VMR Volume Mixing Ratio ZPD Zero Path Difference

A- 1

APPENDIX B -- WORK-OFF PLAN TABLE

Section or Table Number	What's Missing	Targeted Release

В-

2