

ACTIVATE Summer Process Study Cloud Analysis

Ewan Crosbie

<u>Contributions/Data from:</u> John Hair, Luke Ziemba, Michael Shook, Eddie Winstead, Taylor Shingler, Rich Moore, Claire Robinson, Lee Thornhill, Glenn Diskin, Josh Digangi, Yonghoon Choi, Christiane Voigt, Simon Kirschler, David Painemal

1. Summary of summer process study datasets

Measurement Report: Cloud and environmental properties associated with aggregated shallow marine cumulus and cumulus congestus, Crosbie, et al. in prep, ACP \rightarrow to be submitted very soon

- \rightarrow See also poster summarizing process study microphysics
- 2. Ongoing work on mechanisms for cloud aggregation
- 3. Ongoing work related to cloud remote sensing
 - \rightarrow See also John Hair's poster

ACTIVATE Summer Process Study - Recap

- What causes shallow convection to aggregate?
- What causes very small Cu (A) and deeper Cu with clearings (B) to regionally coexist?

Bretherton and Blossey, 2017 (BB17)

- anomalies in precipitation, radiation, surface flux not necessary for organization
- Relationship between moisture and stability profile important

Seifert and Heus, 2013 precipitation necessary organization

- precipitation necessary, organization caused by evaporation/cold pools
- Zuidema et al., 2012, 2017

ACTIVATE Summer Process Study

ACTIVATE Summer Process Study

Case 3: 2021-06-07 – Cloud Motion Tracking

+100

-100

-100

X (km): Cloud motion

- Image cross correlation used to estimate cloud cluster motion vector
- Lifecycle drift determined using linear regression
- Comparison of cluster motion to wind hodograph shows relationship with the environmental wind profile
- Imagery and aircraft positions projected onto a rotated moving coordinate system
- Aircraft sampling assessed in the context of lifecycle

Precipitation

			Case							
			1	2	3	4A	4B	5A	5B	6
90 th % Rain Intensity		mm hr-1	No precip. measured	1.55	0.97	2.58	4.29	No precip. measured	3.87	4.41
Mean Intensity		mm hr-1		0.47	0.35	0.97	1.41		1.11	1.53
Rain coverage		km		7.1	0.7	17.1	9.2		0.6	10.4
Fractional coverage		-		0.24	0.02	0.47	0.36		0.02	0.17
Cluster Rain Rate		mm hr-1		0.11	0.007	0.45	0.52		0.02	0.26
	Rain	Δθ (K)	_	-0.21	<u> </u>	-0 14	-0.15	_	-	-0.15
	·······································	$\Delta \theta_{e}(K)$	-	0.81	-	-1.92	-2.68	-	-	-1.49

Case 6 minimum altitude: 3 rain shafts encountered with distinctly variable downdraft properties

Precipitation

- 4 passes through the main turret of Case 3
- "Core" updraft collocated with peak water content
- Rainwater is found in the downdraft region surrounding the core
- Implications:
 - Evaporation helps drive a subsiding shell
 - Accretion is suppressed when nascent raindrops do not fall through the LWCrich core
 - Small raindrops do not survive the cloud periphery because of dry air

Mesoscale overturning circulation

6

5

Altitude (km) c

2

Control volume analysis of the region enclosed by the dropsondes, moving in the cloud-relative coordinate system

$$w_m(z) \cong \frac{1}{\rho(z)} \int_0^z \rho\left(\left(\frac{\Delta U}{\Delta x}\right)_{fit} + \left(\frac{\Delta V}{\Delta y}\right)_{fit}\right) dz - w_0 \frac{z}{z_{ref}}$$

x, y, U, V in cloud coordinate, w_0 a large-scale correction at z_{ref}

Velocity gradients fit using linear regression (e.g., Lenschow et al., 1999). Raymond et al., 2009 also a useful reference.

Cases that are less influenced (or not affected) by precipitation thermodynamics and energetics follow a S shape (Cases 2 & 3) or a D shape (Cases 1 & 5B)

Precipitation dominated cases are reversed and have a Z shape

Mesoscale overturning circulation

Initially uniform cloud field Perturbation results in anomalous convective activity →circulation is the adjustment to anomalous apparent heating

- If this results in net drying, the anomaly is damped
- If this results in net moistening, the anomaly is amplified

→ Janssens et al., 2023 – "Nonprecipitating shallow cumulus convection is intrinsically unstable to length scale growth"

Microphysics

→ See poster on process study microphysics and environmental properties

Cloud Remote Sensing – Cloud Lidar Ratio

- Inverse relationship between lidar ratio (S_c) and effective radius (r_e)
- S_c sensitivity to size stronger than predicted by theory (based on CALIPSO/MODIS - Hu et al., 2021)
- Similar relationship found for HSRL2-RSP (right)
- S_c extends sizing information to regions where RSP not available
- S_c appears to be more sensitive to precipitation influence on r_e than RSP

Case 4A: Mature/Decaying Cluster

- Case 4A sampled a convective cluster during the latter part of its lifecycle
- Increases in r_e inferred from lidar ratio are spatially correlated with higher cloud tops
- These regions also exhibit higher spatial variance in the cloud top height
- Extinction is more variable in the convective regions
- Peripheral regions are attributed to (sometimes thin) non-precipitating stratiform layers

13

Case 6: HSRL ice detection

- High S_c found in potential freezing locations
- Not sampled in situ (based on cloud growth)
- S_c retrieval assumes depol only from multiple scattering
- Irregular ice particles also produce depol therefore causing a high "effective" S_c

- Spokes 5 and 6 (10 min separation) resulted in a repeated signature of ice in a consistent location
- Spoke 5 indicated that the leading turret was still liquid with ice located on the shoulder
- Spoke 6 showed collocation of ice with the coldest tops 15 ٠

Conclusion: (Working Hypothesis)

- agrees with BB17 conceptual model
- Precipitation an effect not a cause
- Surface buoyancy flux anomalies important (Gulf Stream)
- Nature generates many other modes of variability external to the system (e.g. not an idealized LES)

- Asymmetry an aspect of deeper systems with more significant precipitation
- Cold pools may exist but downward transport of low θ_e air may occur without significant negative buoyancy
- Fully decoupled remnants not able to tap into surface θ_{e}
- Onset of this phase caused by internally generated shearing of the inflow
- → precipitation may both help and hinder scale growth