

Impacts of Gulf Stream Variations on the Transition of Marine Post-frontal Clouds

November 9, 2023

Jingyi Chen

Co-authors: Hailong Wang, David Painemal, Armin Sorooshian

PNNL is operated by Battelle for the U.S. Department of Energy

Gulf Stream in North Atlantic Ocean Region (WNAO)

Pacific

Northwest

Li et al., 2004, GRL

- A cloud-line is formed along with GS region.
- Upward motion of the air is caused by mesoscale solenoidal circulation induced by the large surface thermal gradient

Smoothed SST simulation does not reproduce the rain band.

Minobe et al., 2008, Nature

This convergence zone closely follows the meandering path of the GS and the area with the strongest SST gradient.

Painemal et al., 2021, JGR

Variations of gulf stream in WNAO region

Decadal Variations of SST Anomalies (Feb.– Mar.) over the western North Atlantic Ocean region (WNAO)

Data source: ERA5-reanalysis

Scientific Question: How does these changes in GS impact the post-frontal clouds morphology?

Mean of Temp (°C)

0.5 -0.5 90°W 72°W 54°W 36°W 18°W 0° Change in SSH (m) 0.1 0.05 -0.05 -01 90°W 72°W 54°W 36°W 18°W 0° Change in LHF (W m⁻²) 10 -10 90°W 72°W 54°W 36°W 18°W 0° Change in SST (°C) 0.5 -0.5 90°W 72°W 54°W 36°W 18°W 0°

Change in Temp (°C)

Smeed et al., 2018., GRL

ACTIVATE post-frontal cloud case during CAOs

Vertically Integrated Hydrometer Mixing Ratio March 1st, 15:00 UTC (10:00 EST)

Dropsondes at 15-16 UTC (10-11 EST)

WRF (v4.2) Domain Setups

- Domain Size (square): 1650km, 450km
- Resolution: 3km, 1km

Vertical Profiles of Boundary Layer Properties

Chen et al., JAS, 2022

400 ____ _WP+IWP (g m 200

Sensitivities of SST gradient experiments

Control Simulation (Default SST)

Plus4 (increase SST by 4 K)

Gradplus (increase SST anomalies by 25%)

Longitude

SST impacts zone classification and cloud mask morphology in post-frontal region Northwest

Pacific

SST+4: Cloud deck is closer to coast

Boundary layer energy transport: isentropic analysis

Control Simulation

Pacific

Height (km)

0

Height (km)

Northwest

Identify the circulation that vertically transport energy.

"SST_grad" simulation with increased SST gradient.

Averaging by height between 200 m and 2 km

Contrast variabilities in the north and south region of the GS

Time evolution of post-frontal clouds

Pacific

Northwest

sstgrad: Upwind low θ impacts the down-wind ones.

Summary

- SST+4:
 - 1. warmer and moister BL
 - 2. less but larger clouds
 - 3. less liquid and more ice phase hydrometeor
 - 4. More long cloud lines at the edge of PFCs.
- Increased SST gradient
 - 1. Impacts are larger in the upwind negative SST anomalies region.
 - 2. Colder and drier BL
 - 3. Less but larger clouds
 - 4. A little more liquid but less ice phase hydrometeor
 - 5. Weaker massflux for energy circulation

Thank you

Questions? Email: jingyi.chen@pnnl.gov

