



Quantifying aerosol-cloud interactions over the western North Atlantic Ocean during the ACTIVATE field campaign

November 10, 2023

Xiang-Yu Li (xiangyu.li@pnnl.gov), Hailong Wang, TC Chakraborty, Armin Sorooshian



PNNL is operated by Battelle for the U.S. Department of Energy





# N<sub>a</sub>-N<sub>c</sub> relation

- ACI poses the largest uncertainty for climate projection
- Understand N<sub>a</sub>-N<sub>c</sub> relation and key physical processes



Science: Build unprecedented dataset (~172 RFs) to better understand aerosol-cloud-meteorology interactions, improve physical parameterizations for Earth system, ....

# N<sub>a</sub>-N<sub>c</sub>: LES studies over the ACTIVATE region









### N<sub>a</sub>-N<sub>c</sub>: LES studies over the ACTIVATE region

 $\langle N_c \rangle \, [\mathrm{cm}^{-3}]$ 

2021-06-02 • FCDP 4 • 0602\_NC +0602\_NA1 +0602\_NA2 3 Height [km]  $\mathbf{2}$ 100 200 300

Summertime Precipitating **Shallow Cumulus** 

Again, challenging to reproduce FCDP-N<sub>c</sub>



3

0

0<u>`</u>

200

# $N_a\text{-}N_c\text{:}$ correlation between $N_c$ and w'

 Substantial difference between LES and observation in N<sub>c</sub> – w'

Pacific

Northwest

NATIONAL LABORATOR

 No clear N<sub>c</sub> – w' from the 154 cases among 172 ACTIVATE flights







# N<sub>a</sub>-N<sub>c</sub>: all ACTIVATE flights data

 $\sim$ 172 ACTIVATE flights data represent different meteorology, cloud, and aerosol conditions. Can we get

 $N_{c} = G(X_{BCB}, N_{a,BCB}, w', u, v, T, q_{v}, \mathbf{x}, zenith, ...)?$ 

 $X_{BCB}$ : chemical components of aerosols measured below cloud base (BCB)  $N_{a,BCB}$ : # concentration of aerosols w', u, v: measured velocity T,  $q_v$ : measured temperature, water vapor mixing ratio

**x**: lat, lon, alt



## N<sub>a</sub>-N<sub>c</sub>: all ACTIVATE flights data

$$N_c = G(X_{BCB}, N_{a,BCB}, w', u, v, T, q_v, x, zenith)$$

### Methods:

- Random forest model (RFM)
- ~172 ACTIVATE flights data

### Results:

- RFM can successfully predict observed  $N_c$  even though the  $N_a\text{-}N_c$  relation is nonlinear and multiscale





# N<sub>a</sub>-N<sub>c</sub>: variable importance



- Cross validations K-folds and Monte-Carlo yield almost the same variable importance
- The RFM captures the importance of the accumulation aerosol mode (Na\_LAS\_BCB)



## N<sub>a</sub>-N<sub>c</sub>: predict LES-N<sub>c</sub>



- The RFM predicts the LES-N<sub>c</sub> reasonably well but cannot capture the physical variable importance
- Observation-driven model to train the LES

9



## Take-home message

- With the ~172 ACTIVATE flight data as the training and validation data, the random forest model can successfully predict observed N<sub>c</sub> and capture the variable importance even though the  $N_a$ - $N_c$  relation is nonlinear and multiscale
- The RFM predicts the LES-N<sub>c</sub> reasonably well but cannot capture the variable importance
- Observation-driven model to represent N<sub>a</sub>-N<sub>c</sub> relation for LES





Xiang-Yu Li (xiangyu.li@pnnl.gov)



## Appendices



| Window size | $R^2$ training score | $R^2$ validation score | OOB score |
|-------------|----------------------|------------------------|-----------|
| 1           | 0.95                 | 0.69                   | 0.68      |
| 2           | 0.97                 | 0.81                   | 0.80      |
| 5           | 0.99                 | 0.93                   | 0.93      |
| 10          | 1.00                 | 0.98                   | 0.98      |
| 20          | 1.00                 | 0.99                   | 0.99      |
| 50          | 1.00                 | 1.00                   | 1.00      |



