

Jianhao Zhang^{1,2} Brian Cairns³ Graham Feingold² and ACTIVATE science team

CIRES at the University of Colorado
Boulder
NOAA Chemical Sciences Laboratory
NASA/GISS

NOAA CHEMICAL SCIENCES LABORATO

Exploring emergent properties of complex aerosol-cloud-meteorology interactions over the WN Atlantic during ACTIVATE

Emergent properties of warm cloud system

Cloud street evolution during Cold-Air-Outbreaks Precip-driven breakup

NOAA CHEMICAL SCIENCES LABORATORY

Cloud street evolution during Cold-Air-Outbreaks Entrainment-driven breakup

Explore LWP-N_d relationship in ACTIVATE region

non-CAO low-clouds, RSP LWP & N_d

All 3-year BCB legs (excluding CAO cases)

- LWP, N_d calculated from RSP τ and r_e (polarimetric) using adiabatic model
- RSP and BCB leg collocation: 15km and 30min
- Overall a '-ve' LWP-N_d slope (-0.18)
- 'inverted-v' shape evident
- But, a '+ve' slope at high N_d still exists.

The role of updraft speed (BCB turbulence)

All 3-year BCB legs (excluding CAO cases)

- LWP, N_d calculated from RSP τ and r_e (polarimetric) using adiabatic model
- RSP and BCB leg collocation: 15km and 30min
- <(w')^{2>1/2} as a measure of sub-cloud turbulence
- '+ve' LWP-N_d slope explained by subcloud dynamics
- High-turbulence condition consistent with "more N_a → more N_d (activation) → more LWP"

A cautionary note: r_e uncertainty & LWP-N_d slope

A cautionary note: r_e uncertainty & LWP-N_d slope

CIRES

Summary Questions? Suggestions? Comments?

- CAO-evolution characterization in GV spaces a framework to integrate process/large-scale modeling and in-situ/satellite observations (seeking collaborations).
- Next step: understand aerosol & large-scale environmental control on precip- vs entrainment- driven breakup.
- Characterize the role of updraft/turbulence in governing the LWP-N_d relationship; an overlooked confounding of aerosolcloud interactions in satellite-based approaches?

- Can we really use satellite observed LWP-N_d slope to infer ACI for <u>all</u> low clouds (especially disorganized, broken clouds)?
- How much of the slope is due to r_e uncertainties in retrievals?

