Exploring emergent properties of complex aerosol-cloud-meteorology interactions over the WN Atlantic during ACTIVATE

Jianhao Zhang1,2
Brian Cairns3
Graham Feingold2
and
ACTIVATE science team

1. CIRES at the University of Colorado Boulder
2. NOAA Chemical Sciences Laboratory
3. NASA/GISS
Emergent properties of warm cloud system

LWP-N_d

1. Droplet activation
2. Condensational growth
3. Collision-coalescence
4. Entrainment
 1) homogeneous
 2) inhomogeneous

Albedo-f_c

- **Engstrom et al. 2015**
- **McCoy et al. 2023**
- **Hoffmann et al. 2023**

Albedo_{cld}-LWP

data: LES ensemble of StrCu

- **Cloud fraction**
- **Rain**

15 μm
Cloud street evolution during Cold-Air-Outbreaks

Precip-driven breakup

2-D “trajectories” inferring cloud street evolutions

- ERA5 1000hPa winds
- GOES16 LWP, N_d, A_c

Precip-driven breakup

1) drop activation
2) condensational growth
3) collision-coalescence dominates, while entrainment reduce LWP

- fewer and bigger drops, leading to lower cloud albedo.
Cloud street evolution during Cold-Air-Outbreaks

Entrainment-driven breakup

2-D “trajectories” inferring cloud street evolutions

- ERA5 1000hPa winds
- GOES16 LWP, \(N_d \), \(A_c \)

Entrainment-driven breakup
1) drop activation with abundant aerosol
2) Minimal condensational growth
3) Entrainment dominates, while collision-coalescence increase \(r_e \)
 - breakup phase maintains similar albedo.

02/21/2021
11am LST
RSP \(N_a \): 679.2 /cc

03/13/2022
11am LST
BCB CCN: 396.2 /cc
Explore LWP-N_d relationship in ACTIVATE region

- Why ACTIVATE region show ‘v-shape’?
 - Is this due to all the CAO cases?
 - Other confounding factors?

- Can we really use LWP-N_d relationship globally to infer aerosol-cloud interactions for all low clouds? ???
non-CAO low-clouds, RSP LWP & N_d

Excluding all CAO flights

- LWP, N_d calculated from RSP τ and r_e (polarimetric) using adiabatic model
- RSP and BCB leg collocation: 15km and 30min
- Overall a ‘–ve’ LWP-N_d slope (-0.18)
- ‘inverted-ν’ shape evident
- But, a ‘+ve’ slope at high N_d still exists.
The role of updraft speed (BCB turbulence)

All 3-year BCB legs (excluding CAO cases)

- LWP, N_d calculated from RSP τ and r_e (polarimetric) using adiabatic model
- RSP and BCB leg collocation: 15km and 30min
- $\langle (w')^2 \rangle^{1/2}$ as a measure of sub-cloud turbulence
- ‘+ve’ LWP-N_d slope explained by sub-cloud dynamics
- High-turbulence condition consistent with “more N_a \rightarrow more N_d (activation) \rightarrow more LWP”
A cautionary note: r_e uncertainty & LWP-N_d slope

All 3-year ACB legs (excluding CAO cases)

- BCT legs CDP-r_e, collocated with RSP polarimetric r_e and MODIS bi-spectral (2.5° and 1hr).
- Markedly different LWP-N_d slope between the 2 methods.
- Perhaps the slope has nothing to do with physics, purely from retrieval errors?

Non-CAO

- RSP-derived
 - MODIS biased high
- MODIS-derived
 - RSP biased high

- CDP in-situ (BCT) r_e vs. LWP
- RSP polarimetric r_e vs. N_d
- Column-mean
- Column-median
A cautionary note: r_e uncertainty & LWP-N_d slope
Characterize the role of updraft/turbulence in governing the LWP-N_d relationship; an overlooked confounding of aerosol-cloud interactions in satellite-based approaches?

CAO-evolution characterization in GV spaces – a framework to integrate process/large-scale modeling and in-situ/satellite observations (seeking collaborations).

Next step: understand aerosol & large-scale environmental control on precip- vs entrainment-driven breakup.

Can we really use satellite observed LWP-N_d slope to infer ACI for all low clouds (especially disorganized, broken clouds)?

How much of the slope is due to r_e uncertainties in retrievals?