

- Broad campaign summary
- Meteorology overview (Shook/Scarino et al.)
- Modeling summary? (LES/SCM/GCM intercomparison activities)

Each of these takes a lot of time and planning, so let's prioritize after looking at examples...

Campaign Summary Examples

ACTIVATE

Earth Syst. Sci. Data, 13, 4067–4119, 2021 https://doi.org/10.5194/essd-13-4067-2021 @ Author(s) 2021. This work is distributed under the Creative Commons Altribution 4.0 License. Science

EUREC⁴A

Biorn Stevens¹, Sandrine Bonv², David Farrell³, Felix Ament^{4,1}, Alan Blyth⁵, Christopher Fairall⁶, Johannes Karstensen⁷, Patricia K. Quinn⁸, Sabrina Speich⁹, Claudia Acquistapace¹⁰, Franziska Aemisegger¹¹, Anna Lea Albright², Hugo Bellenger², Eberhard Bodenschatz¹² Kathy-Ann Caesar³, Rebecca Chewitt-Lucas³, Gijs de Boer^{13,6}, Julien Delanoë¹⁴, Leif Denby¹⁵ Florian Ewald¹⁶, Benjamin Fildier⁹, Marvin Forde³, Geet George¹, Silke Gross¹⁶, Martin Hagen¹⁶. Andrea Hausold¹⁶, Karen J. Heywood¹⁷, Lutz Hirsch¹, Marek Jacob¹⁰, Friedhelm Jansen¹, Stefan Kinne¹, Daniel Klocke¹⁸, Tobias Kölling^{19,1}, Heike Konow⁴, Marie Lothon²⁰, Wiebke Mohr²¹ Ann Kristin Naumann^{1,22}, Louise Nuijens²³, Léa Olivier²⁴, Robert Pincus^{13,6}, Mira Pöhlker²⁵, Gilles Reverdin²⁴, Gregory Roberts^{26,27}, Sabrina Schnitt¹⁰, Hauke Schulz¹, A. Pier Siebesma²³, Claudia Christine Stephan¹, Peter Sullivan²⁸, Ludovic Touzé-Peiffer², Jessica Vial², Raphaela Vogel², Paquita Zuidema²⁹, Nicola Alexander³, Lyndon Alves³⁰, Sophian Arixi²⁶, Hamish Asmath³¹, Gholamhossein Bagheri¹², Katharina Baier¹, Adriana Bailey²⁸, Dariusz Baranowski³², Alexandre Baron³³, Sébastien Barrau²⁶, Paul A. Barrett³⁴, Frédéric Batier³⁵, Andreas Behrendt³⁶, Arne Bendinger⁷, Florent Beucher²⁶, Sebastien Bigorre³⁷, Edmund Blades³⁸, Peter Blossev³⁹, Olivier Bock⁴⁰, Steven Böing¹⁵, Pierre Bosser⁴¹, Denis Bourras⁴², Pascale Bouruet-Aubertot²⁴ Keith Bower⁴³, Pierre Branellec⁴⁴, Hubert Branger⁴⁵, Michal Brennek⁴⁶, Alan Brewer⁴⁷, Pierre-Etienne Brilouet 20, Björn Brügmann¹, Stefan A. Buehler⁴, Elmo Burke⁴⁸, Ralph Burton⁵, Radiance Calmer¹³, Jean-Christophe Canonici⁴⁹, Xavier Carton⁵⁰, Gregory Cato Jr.⁵¹, Jude Andre Charles⁵², Patrick Chazette³³, Yanxu Chen⁹, Michal T. Chilinski⁴⁶, Thomas Choularton⁴³ Patrick Chuang⁵³, Shamal Clarke⁵⁴, Hugh Coe⁴³, Céline Cornet⁵⁵, Pierre Coutris⁵⁶, Fleur Couvreux²⁶, Susanne Crewell¹⁰, Timothy Cronin⁵⁷, Zhiqiang Cui¹⁵, Yannis Cuypers²⁴, Alton Daley³, Gillian M, Damerell¹⁷, Thibaut Dauhut¹, Hartwig Deneke⁵⁸, Jean-Philippe Desbios⁴⁹, Steffen Dörner²⁵, Sebastian Donner²⁵, Vincent Douet⁵⁹, Kyla Drushka⁶⁰, Marina Dütsch^{61,62}, André Ehrlich⁶³. Kerry Emanuel⁵⁷, Alexandros Emmanouilidis⁶³, Jean-Claude Etienne²⁶, Sheryl Etienne-Leblanc⁶⁴ Ghislain Faure²⁶, Graham Feingold⁴⁷, Luca Ferrero⁶⁵, Andreas Fix¹⁶, Cyrille Flamant⁶⁶, Piotr Jacek Flatau²⁷, Gregory R. Foltz⁶⁷, Linda Forster¹⁹, Iulian Furtuna⁶⁸, Alan Gadian¹⁵

1. Intro

- 2. General setting and novel measurements
- 3. Science facets
- 4. Scientific practice
- 5. Data availability
- 6. Conclusions

Atmos. Chem. Phys., 21, 1507–1563, 2021 https://doi.org/10.5194/acp-21-1507-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License.

An overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) project: aerosol-cloud-radiation interactions in the southeast Atlantic basin

Jens Redemann¹, Robert Wood², Paquita Zuidema³, Sarah J. Doherty², Bernadette Luna⁴, Samuel E. LeBlanc^{5,4}, Michael S. Diamond², Yohei Shinozuka⁷, Ian Y. Chang¹, Rei Ueyama⁴, Leonhard Pfister⁴, Ju-Mee Ryoo^{4,36}, Amie N. Dobracki³, Arlindo M. da Silva⁶, Karla M. Longo^{6,7}, Meloë S. Kacenelenbogen⁴, Connor J. Flynn¹, Kristina Pistone^{5,4}, Nichola M. Knox⁸, Stuart J. Piketh⁹, James M. Haywood¹⁰, Paola Formenti¹¹, Marc Mallet¹², Philin Stier¹³ Andrew S. Ackerman¹⁴ Susanne F. Bauer¹⁴ Ann M. Fridlind¹⁴ Gregory R. Carmichael¹⁵

- 1. Intro
- 2. Project background
- 3. Description of deployments
- 4. Preliminary science findings and implications
- 5. Discussion
- 6. Conclusions and future work

Campaign Summary Examples

ACTIVATE

Atmos. Chem. Phys., 11, 627–654, 2011 www.atmos-chem-phys.net/11/627/2011/ doi:10.5194/acp-11-627-2011 © Author(s) 2011. CC Attribution 3.0 License.

The VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx): goals, platforms, and field operations

R. Wood¹, C. R. Mechoso², C. S. Bretherton¹, R. A. Weller³, B. Huebert⁴, F. Straneo³, B. A. Albrecht⁵, H. Coe⁶, G. Allen⁶, G. Vaughan⁶, P. Daum⁷, C. Fairall⁸, D. Chand^{1,*}, L. Gallardo Klenner⁹, R. Garreaud⁹, C. Grados¹⁰, D. S. Covert¹, T. S. Bates¹¹, R. Krejci¹², L. M. Russell¹³, S. de Szoeke¹⁴, A. Brewer⁸, S. E. Yuter¹⁵, S. R. Springston⁷, A. Chaigneau¹⁷, T. Toniazzo¹⁶, P. Minnis¹⁸, R. Palikonda²³, S. J. Abel¹⁹, W. O. J. Brown²⁰, S. Williams²⁰, J. Fochesatto²¹, J. Brioude^{22,8}, and K. N. Bower⁶

- 1. Intro
- 2. VOCALS-REx study region and dates
- 3. Platforms and instrumentation
- 4. Sampling strategies
- 5. Satellite datasets produced specifically for VOCALS-Rex
- 6. Coordinated modeling for VOCALS-Rex
- 7. VOCALS data management
- 8. Conclusions

OCEAN-CLOUD-ATMOSPHERE-LAND INTERACTIONS IN THE SOUTHEASTERN PACIFIC

The VOCALS Program

BY C. R. MECHOSO, R. WOOD, R. WELLER, C. S. BRETHERTON, A. D. CLARKE, H. COE, C. FAIRALL, J. T. FARRAR, G. FEINGOLD, R. GARREAUD, C. GRADOS, J. MCWILLIAMS, S. P. DE SZOEKE, S. F. YLITER, AND P. ZLIIDEMA

- 1. Research activities
- 2. The coastal circulation
- 3. The ocean heat budget
- 4. Aerosol-cloud-precipitation interactions
- 5. Modeling
- 6. Community capacity building
- 7. Summary of findings and remaining questions

Campaign Summary Examples

ACTIVATE

@AGU PUBLICATIONS

Journal of Geophysical Research: Atmospheres

RESEARCH ARTICLE

10.1002/2015JD024297

Special Section:

Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys, 2013 (SEAC4RS) Planning, implementation, and scientific goals of the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC⁴RS) field mission

Owen B. Toon¹, Hal Maring², Jack Dibb³, Richard Ferrare⁴, Daniel J. Jacob⁵, Eric J. Jensen⁶, Z. Johnny Luo⁷, Gerald G. Mace⁸, Laura L. Pan⁹, Lenny Pfister⁶, Karen H. Rosenlof¹⁰, Jens Redemann⁶, Jeffrey S. Reid¹¹, Hanwant B. Singh⁶, Anne M. Thompson¹², Robert Yokelson¹³, Patrick Minnis⁴, Gao Chen⁴, Kenneth W. Jucks², and Alex Pszenny²

1. Intro

- 2. Scientific Motivation and Key Questions
- 3. Meteorological Context
- 4. Implementation
- 5. Summary of SEAC4RS Implementation and Some Initial Results

Aerosol and Cloud Experiments in the Eastern North Atlantic (ACE-ENA)

Jian Wang, Rob Wood, Michael P. Jensen, J. Christine Chiu, Yangang Liu, Katia Lamer, Neel Desai, Scott E. Giangrande, Daniel A. Knopf, Pavlos Kollias, Alexander Laskin, Xiaohong Liu, Chunsong Lu, David Mechem, Fan Mei, Mariusz Starzec, Jason Tomlinson, Yang Wang, Seong Soo Yum, Guangjie Zheng, Allison C. Aiken, Eduardo B. Azevedo, Yann Blanchard, Swarup China, Xiquan Dong, Francesca Gallo, Sinan Gao, Virendra P. Ghate, Susanne Glienke, Lexie Goldberger, Joseph C. Hardin, Chongai Kuang, Edward P. Luke, Alyssa A. Matthews, Mark A. Miller, Ryan Moffet, Mikhail Pekour, Beat Schmid, Arthur J. Sedlacek, Raymond A. Shaw, John E. Shilling, Amy Sullivan, Kaitlyn Suski, Daniel P. Veghte, Rodney Weber, Matt Wyant, Jaemin Yeom, Maria Zawadowicz, and Zhibo Zhang

- 1. Intro
- 2. Measurements and observation strategy
- 3. Meteorological conditions
- 4. Observations and early findings
- 5. Summary and Outlook

BAMS

Article

Met Overview Examples

ACTIVATE

Atmos. Chem. Phys., 21, 16689–16707, 2021 https://doi.org/10.5194/acp-21-16689-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License.

https://doi.org/10.5194/acp-2022-256 Preprint. Discussion started: 1 June 2022 © Author(s) 2022. CC BY 4.0 License.

A meteorological overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) campaign over the southeastern Atlantic during 2016–2018: Part 1 – Climatology

Ju-Mee Ryoo^{1,2}, Leonhard Pfister¹, Rei Ueyama¹, Paquita Zuidema³, Robert Wood⁴, Ian Chang⁵, and Jens Redemann⁵

1. Intro

- 2. Data
- 3. Seasonal mean and variability of the synoptic-scale circulation
- 4. Summary and discussion

A meteorological overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) campaign over the southeast Atlantic during 2016-2018: Part 2 – daily and synoptic characteristics

Ju-Mee Ryoo^{1,2}, Leonhard Pfister¹, Rei Ueyama¹, Paquita Zuidema³, Robert Wood⁴, Ian Chang⁵, Jens Redemann⁵

- 1. Intro
- 2. Data and methodology
- 3. Variability of synoptic-scale circulation during the deployments
- 4. Relationships between low cloud cover and meteorological variables
- 5. Summary and discussion

Peterson, DA, et al. 2019. Meteorology influencing springtime air quality, pollution transport, and visibility in Korea. *Elem Sci Anth*, 7: 57. DOI: https://doi.org/10.1525/elementa.395

RESEARCH ARTICLE

Meteorology influencing springtime air quality, pollution transport, and visibility in Korea

David A. Peterson^{*}, Edward J. Hyer^{*}, Sang-Ok Han[†], James H. Crawford[‡], Rokjin J. Park[§], Robert Holz^{||}, Ralph E. Kuehn^{||}, Edwin Eloranta^{||}, Christoph Knote[¶], Carolyn E. Jordan^{**} and Barry L. Lefer^{††}

- 1. Intro
- 2. Study region and measurement strategy
- 3. General meteorology and observed pollution
- 4. The role of cold fronts in surface air quality
- 5. Dynamic meteorology and complex aerosol vertical profiles
- 6. Dynamic meteorology, low-level transport, and haze development
- 7. Stagnation under a persistent anticyclone
- 8. Blocking pattern
- 9. Contrasting meteorology and observational limitations
- 10. Representativeness of KORUS-AQ meteorology
- 11. Summary and Conclusions

Modeling Overview Examples

Atmos. Chem. Phys., 15, 153–172, 2015 www.atmos-chem-phys.net/15/153/2015/ doi:10.5194/acp-15-153-2015 © Author(s) 2015. CC Attribution 3.0 License.

Global and regional modeling of clouds and aerosols in the marine boundary layer during VOCALS: the VOCA intercomparison

M. C. Wyant¹, C. S. Bretherton¹, R. Wood¹, G. R. Carmichael², A. Clarke³, J. Fast⁴, R. George¹, W. I. Gustafson Jr.⁴, C. Hannay⁵, A. Lauer^{6,*}, Y. Lin^{7,**}, J.-J. Morcrette⁸, J. Mulcahy⁹, P. E. Saide², S. N. Spak², and Q. Yang⁴

- 1. Intro
- 2. Case setup
- 3. Results
- 4. Discussion
- 5. Conclusions

ACTIVATE

Composition Overview Examples

Atmos. Chem. Phys., 11, 5237–5262, 2011 www.atmos-chem-phys.net/11/5237/2011/ doi:10.5194/acp-11-5237-2011 © Author(s) 2011. CC Attribution 3.0 License.

South East Pacific atmospheric composition and variability sampled along 20° S during VOCALS-REx

G. Allen¹, H. Coe¹, A. Clarke², C. Bretherton³, R. Wood³, S. J. Abel⁴, P. Barrett⁴, P. Brown⁴, R. George³, S. Freitag², C. McNaughton², S. Howell², L. Shank², V. Kapustin², V. Brekhovskikh², L. Kleinman⁵, Y.-N. Lee⁵, S. Springston⁵, T. Toniazzo⁶, R. Krejci⁷, J. Fochesatto⁸, G. Shaw⁸, P. Krecl⁹, B. Brooks⁹, G. McMeeking¹, K. N. Bower¹, P. I. Williams¹, J. Crosier¹, I. Crawford¹, P. Connolly¹, J. D. Allan¹, D. Covert³, A. R. Bandy¹⁰, L. M. Russell¹¹, J. Trembath¹², M. Bart⁹, J. B. McQuaid⁹, J. Wang⁵, and D. Chand^{3,*}

- 1. Intro
- 2. Data sources
- 3. Data sampling
- 4. Results
- 5. Conclusions

ACTIVATE

Goals: what do we want to tell the community about the project

Working groups to develop ideas (new figures/tables/analysis) for overview paper broken up into objectives

0920-1000: Pick a group linked to an objective you have worked most on

1015-1100: Pick another group

1115: Reports from groups

Or is better use of time something else like coming together as a group and spending more time collectively on each objective?

Ideas to steer discussion:

- Can we design a figure(s) to showcase our statistics well (e.g., basic or joint histograms of variables; scatterplots)
- Is there a case flight that best showcases a specific objective and what could be shown?
 - How about a winter and summer example?
- Is there a type of figure we can uniquely make that other ACI-campaigns cannot due to our extensive statistics?
- What types of events or phenomena can be summarized in a table?
 - E.g., list of CAOs per winter season?
- Table to list all past ACI campaigns to place ACTIVATE into context?
- What is(are) the most important gap(s) and/or paper(s) left to work on unrelated to an overview paper?

Original Science Objectives

ACTIVATE

Science objectives and questions related to acquisition and use of a large in situ and remote sensing dataset of aerosols and MBL clouds (spanning the continuum from stratiform to cumulus)

Objective 1. Quantify N_a-CCN-N_d relationships and reduce uncertainty in model cloud droplet activation parameterizations.

- A. How do these relationships depend on aerosol characteristics (e.g., amount, size, composition, type) and dynamic and thermodynamic properties?
- B. How consistent are these relationships across the complete range of spatial scales provided by in situ measurements and airborne and satellite remote sensing retrievals?
- C. What are the magnitudes of biases in the N_a-CCN-N_d relationships from satellite aerosol proxies? How do these translate to uncertainties in N_d parameterizations in current global aerosolclimate models?

Deliverables: Improved model representations of N_a-CCN-N_d relationships; unique dataset using a sustained long-term strategy for model intercomparison and process-based studies Objective 2. Improve process-level understanding and model representation of factors governing cloud micro/macro-physical properties and how they couple with cloud effects on aerosol.

- A. What are the relationships between N_d, cloud micro/macrophysical properties, and meteorology?
- B. To what extent do uncertainties in N_a/cloud/meteorology relationships within the targeted cloud regimes in global aerosolclimate models come from biases in aerosols, clouds, and meteorological factors? How can the identified model biases and uncertainties be reduced using the measurements?
- C. How can climate models better represent conditions with known challenges, such as post-frontal clouds and cold air outbreaks?
- D. What is the signature of cloud effects on the CCN budget (e.g., wet scavenging, aqueous processing).

Deliverables: Improved model parameterizations for relationships between cloud microphysical and macrophysical properties; unique dataset using a sustained long-term strategy for model intercomparison and process-based studies

Objective 3: Assess advanced remote sensing capabilities for retrieving aerosol and cloud properties related to aerosol-cloud interactions.

- A. How well and under what conditions can active and passive remote sensing retrievals provide improved measurements for N_d and proxies for CCN concentration?
- B. How well can a combination of remote sensors improve measurements of LWP?

Deliverables: Evaluation and intercomparison of CCN and N_d retrievals and measurements; evaluation of LWP as a function of scale

Overview paper discussion for Objective 3

November 14, 2023

• Develop ideas (figures/tables/analysis) for overview paper

oals

ACTIVATE

Science objectives and questions related to acquisition and use of a large in situ and remote sensing dataset of aerosols and MBL clouds (spanning the continuum from stratiform to cumulus)	Scientific Measurement Requirements
 Objective 3: Assess advanced remote sensing capabilities for retrieving aerosol and cloud properties related to aerosol-cloud interactions. A. How well and under what conditions can active and passive remote sensing retrievals provide improved measurements for Nd and proxies for CCN concentration? B. How well can a combination of remote sensors improve measurements of LWP? Deliverables: Evaluation and intercomparison of CCN and Nd retrievals and measurements; evaluation of LWP as a function of scale 	 Vertically resolved in situ and remote sensing profiles of aerosol optical properties Cloud-top backscatter/extinction/ depolarization and cloud optical depth; MBL height; cloud-top height, LWP, effective radius and variance, N_d, SST Satellite retrievals of cloud properties (cloud fraction, cloud-top height, LWP) and SST

- Chemyakin et al. (2023): LUT for cloud optical properties
- Ferrare et al. (2023): Detection of sea salt from HSRL-2 aerosol depolarization; Compare with CALIPSO
- Nied et al. (2023): Cloud mask for RSP and HSRL-2 dataset.
- Sanchez et al. (2023): Multi-campaign data paper.
- Schlosser et al. (2022): Derive N_a profiles from RSP+HSRL-2
- van Diedenhoven et al. (2022): Derive water fraction, soluble fraction, and size distribution of N_a from RSP; Compare with in situ data
- Dmitrovic et al. (under review): HSRL-2 wind retrievals; Compare with dropsondes.
- Xu et al. (under review): HSRL-2 MLH; Compare with dropsondes.
- Siu et al. (under review): RSP and HSRL-2 AOD evaluation.

• Find good projects to leverage statistics

from Sorooshian et al. (2019)

ΔΟΤΙVΔΤΕ