Langley Aerosol Research Group (LARGE) Science Directorate NASA Langley Research Center Hampton, VA, USA

Richard H. Moore (<u>richard.h.moore@nasa.gov</u>) **Luke D. Ziemba** (<u>luke.ziemba@nasa.gov</u>) Eddie Winstead, Ewan Crosbie, Claire Robinson, Michael Shook Joe Schlosser, HSRL team



# **Observations of Absorbing Aerosol over Bermuda** *STM-2023*



# Motivation: Absorption Profiles during ACTIVATE-Bermuda

Slide-2

ACTIVATE STM-2023



Showing all profiles if altitude > 3.0km Data from 10-s online merge files



# Motivation: Optical Properties for 14 June 2023 Profile









# Absorbing Aerosol: 3 Cases



|                                     | 14 June<br>16:05:15 | 17 June<br>16:20:35 | 18 June<br>14:09:05 |
|-------------------------------------|---------------------|---------------------|---------------------|
| GPS Altitude (km)                   | 4.0 - 8.7           | 4.0 - 8.0           | 4.5 - 8.0           |
| $CN_{10nm}$ (scm <sup>-3</sup> )    | 3436 (919)          | 7579 (2242)         | 4292 (377)          |
| $CN_{10nm-nv}$ (scm <sup>-3</sup> ) | 3006 (850)          | 7029 (2115)         | 3294 (878)          |
| $CN_{3nm}$ (scm <sup>-3</sup> )     | 5675 (1530)         | 12047 (3862)        | 7489 (679)          |
| Abs (532nm, Mm <sup>-1</sup> )      | 7.2 (2.7)           | 15.0 (4.6)          | 8.9 (2.1)           |
| Scat (550nm, Mm <sup>-1</sup> )     | 1.0 (0.8)           | 10.1 (18.5)         | 1.5 (1.1)           |
| CO (ppbv)                           | 79.7 (7)            | 93.4 (10.4)         | 82.7 (6.3)          |
| Ozone (ppbv)                        | 52.5 (5.7)          | 74.9 (12.7)         | 41.9 (16.4)         |

Average Value (standard deviation)

- $CN_{10nm-nv}$  is heated to 350°C  $\rightarrow$  BC, dust, or sea-salt
- Size-dependent loss is applied to CN<sub>10nm-nv</sub>
- High non-volatile fraction suggests that most particles contain a BC 'core'
  - SSA very low for each case
- ACTIVATE
- CO is not particularly elevated





# Absorbing Aerosol: 3 Cases

#### ACTIVATE STM-2023



|                                 | 14 June<br>16:05:15 | 17 June<br>16:20:35 | 18 June<br>14:09:05 |
|---------------------------------|---------------------|---------------------|---------------------|
| GPS Altitude (km)               | 4.0 - 8.7           | 4.0 - 8.0           | 4.5 - 8.0           |
| Non-vol Fraction:               | 87%                 | 93%                 | 77%                 |
| $CN_{3nm}$ (scm <sup>-3</sup> ) | 5675 (1530)         | 12047 (3862)        | 7489 (679)          |
| Abs (5<br>Scat (5<br>Scat (5)   | : 0.11              | 0.38                | 0.13                |
| CO (ppbv)                       | 79.7 (7)            | 93.4 (10.4)         | 82.7 (6.3)          |
| Ozone (ppbv)                    | 52.5 (5.7)          | 74.9 (12.7)         | 41.9 (16.4)         |

Average Value (standard deviation)

- $CN_{10nm-nv}$  is heated to 350°C  $\rightarrow$  BC, dust, or sea-salt
- Size-dependent loss is applied to CN<sub>10nm-nv</sub>
- High non-volatile fraction suggests that most particles contain a BC 'core'
  - CO is not particularly elevated





# Mie Theory: Are Low SSA Values Possible?





- Mie simulations from "MiePlot" for 4 cases with monodisperse particle sizes
- Average SMPS size distributions are shown for each case → 40nm mode
  - Small particle size qualitatively supports the observed low SSA values

\*\* Volume mixing based on Schuster et al. (2005)



# Mie Theory Closure using Measured Size Distribution

With good linear • correlation, distributions were simply scaled using non-volatile number at each 0.5km altitude





Mie Theory to calculate absorption coefficient for BC and 10%-BC cases



ACTIVATE STM-2023

- Reasonable agreement for absorption suggests slightly coated BC
- Measured scattering is too low and uncorrelated



Slide-8

### Mie Theory Closure: PyMieScatt Results



- PyMieScatt Mie Code using the same datapoints
- Reverse Mie calculations (ContourIntersection\_SD):
  - $SD_{meas} + Abs_{meas} + Scat_{meas} \rightarrow n + k$ 
    - Results consistent with MiePlot
    - ▶ k ~ 0.33 0.54



Scattering still overpredicted.



Slide-9

### Mie Theory Closure: PyMieScat Results





### Mie Theory Closure: PyMieScat Results





- k values similar to [n=1.52] case, suggesting insensitivity to real part (n)
- Retrieved n values are low: 1.31-1.48
- Lidar ratios still high



### Absorbing Aerosol: Remote Sensing Perspective

**HSRL2/B200** 

8 -7 -6 -

Altitude(km)

3 -2 -

1-

8 -

7 -6 -

Altitude(km)

3 --

0 -

32.37

-64.7

**HSRL2/B200** 



ACTIVATE STM-2023

### Absorbing Aerosol: Remote Sensing Perspective

### ACTIVATE STM-2023



### Absorbing Aerosol: Remote Sensing Perspective

#### ACTIVATE STM-2023



# All Campaigns: Average Absorption (532nm)







ACTIVATE STM-2023

# All Campaigns: Absorption and CN<sub>10nm-nonvol</sub>

ACTIVATE STM-2023







# Absorbing Aerosol: Conclusions

- Mie Theory simulations were able to reproduce observations using small, mostly-BC particles
  - \*\* Measurements are self-consistent
  - Why is scattering still too low?
  - Treatment of BC shape (Schlosser)
- 2. HSRL sees clean conditions for event days, more quantitative analysis is necessary (especially lidar ratio)
- 3. Absorption events are not obvious in past datasets
  - PSAP measurements may not be sensitive enough

How do we explain the amount and extent of this absorbing aerosol?

- Biomass burning smoke?
- Commercial Aircraft Emissions?





FIREX data: LAS = NASA, UHSAS = NOAA ACCESS data: Moore et al. (2017)

