International Satellite Cloud Climatology Project

International Satellite Cloud Climatology Project (ISCCP) focuses on the distribution and variation of cloud radiative properties to improve the understanding of the effects of clouds on climate, the radiation budget, and the long-term global hydrologic cycle.

Note: Newly reprocessed ISCCP H series data products (HGM, HGH, HGG, HXG, HXS) for 1982-2015 are now available from NOAA/NCEI.

Disciplines:   Clouds Radiation Budget
Legacy Products

ISCCP Publications

Gupta SK, Ritchey NA, Wilbur AC, Whitlock CH, Gibson GG, Stackhouse PW (1999). A Climatology of surface radiation budget derived from satellite data. Journal of Climate, 12 (8), 2691. http://dx.doi.org/10.1175/1520-0442(1999)012<2691:ACOSRB>2.0.CO;2


Lazarus SM, Krueger SK, Mace GG (2000). A Cloud Climatology of the Southern Great Plains ARM CART. Journal of Climate, 13 (10), 1762. http://dx.doi.org/10.1175/1520-0442(2000)013<1762:ACCOTS>2.0.CO;2


William B. Rossow, Schiffer RA (1999). Advances in Understanding Clouds from ISCCP. Bulletin of the American Meteorological Society, 80 (11), 2261. http://dx.doi.org/10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2


Collins WD (1998). A global signature of enhanced shortwave absorption by clouds. Journal of Geophysical Research, 103 (D24), 31669. http://dx.doi.org/10.1029/1998JD200022


Hatzianastassiou N, Cooke B, Kortsakioudakis N, Varvadas I, Koutoulaki K (1999). A model for the longwave radiation budget of the Northern Hemisphere: Comparisons with Earth Radiation Budget Experiment data. Journal of Geophysical Research, 104 (D8), 9489. http://dx.doi.org/10.1029/1999JD900041


Allen D, Pickering K, Molod A (1997). An evaluation of deep convective mixing in the Goddard Chemical Transport Model using International Satellite Cloud Climatology Project cloud parameters. Journal of Geophysical Research, 102 (D21), 25467. http://dx.doi.org/10.1029/97JD02401


Wang X, Key JR (2005). Arctic Surface, Cloud, and Radiation Properties Based on the AVHRR Polar Pathfinder Dataset. Part II: Recent Trends. Journal of Climate, 18 (14), 2575. http://dx.doi.org/10.1175/JCLI3439.1


Wang X, Key JR (2005). Arctic Surface, Cloud, and Radiation Properties Based on the AVHRR Polar Pathfinder Dataset. Part I: Spatial and Temporal Characteristics. Journal of Climate, 18 (14), 2558. http://dx.doi.org/10.1175/JCLI3438.1


Bergman JW, Hendon HH (1998). Calculating monthly radiative fluxes and heating rates from monthly cloud observations. Journal of Atmospheric Sciences, 55 (23), 3471. http://dx.doi.org/10.1175/1520-0469(1998)055<3471:CMRFAH>2.0.CO;2


Piazzolla S, Slobin SD, Amini EP (2000). Cloud Coverage Diversity Statistics for Optical Communications in the Southwestern United States.


Amini E, Slobin S, Piazzolla S (2000). Cloud Coverage Statistics for Optical Communications at Table Mountain Observatory, California.


Sun B (2003). Cloudiness over the contiguous United States: Contemporary Changes observed using ground-based and ISCCP D2 data. Geophysical Research Letters, 30 (2), 1053. http://dx.doi.org/10.1029/2002GL015887


Pai DS, Rajeevan M (1998). Clouds and cloud radiative forcing over tropical Indian Ocean and their relationship with sea surface temperature. Current Science, 74 (4), 372. Retrieved from http://www.iisc.ernet.in/currsci/aug/articles17.htm


Garay MJ, de Szoeke SP, Moroney CM (2008). Comparision of marine stratocumulus cloud top heights in southeastern Pacific retrieved from satellites with coincident ship-based observations. Journal of Geophysical Research, 113 (D18204), http://dx.doi.org/10.1029/2008JD009975


Zhang M, Cess RD, Jing X (1997). Concerning the interpretation of enhanced cloud shortwave absorption using monthly-mean Earth Radiation Budget Experiment/Global Energy Balance Archive measurements. Journal of Geophysical Research, 102 (D22), 25899. http://dx.doi.org/10.1029/97JD02196


Wahab AM, Hasanean HMS (1999). Contrasting features of two tropical summers from satellite observations. Atmospheric Research, 50 (2), 105. http://dx.doi.org/10.1016/S0169-8095(98)00097-0


Laing A, Fritsch MJ, Negri AJ (1999). Contribution of mesoscale convective complexes to rainfall in Sahelian Africa: estimates from geostationary infrared and passive microwave data. Journal of Applied Meteorology and Climatology, 38 (7), 957. http://dx.doi.org/10.1175/1520-0450(1999)038<0957:COMCCT>2.0.CO;2


Lin X, Randall DA, Fowler LD (2000). Diurnal Variability of the Hydrological cycle and Radiative Fluxes: Comparison between Observations and a GCM. Journal of Climate, 13 (23), 4159. http://dx.doi.org/10.1175/1520-0442(2000)013<4159:DVOTHC>2.0.CO;2


Qu J(J), Stephens GL (1996). Estimate of the Surface Ultraviolet-B (UV-B) Radiation Using a Two-stream Atmospheric Radiation Transfer Model.


Pinker R, Wang H, King M, Platnick S (2003). First Use of MODIS Data to Cross-Calibrate with GEWEX/SRB Data Sets. GEWEX News, 14 (4), 4. Retrieved from http://www.gewex.org/Nov2003.pdf


Hatzianastassiou N, Katsoulis B, Vardavas I (2004). Global distribution of aerosol direct radiative forcing in the ultraviolet and visible arising under clear skies. Tellus B, 56 (1), 51. http://dx.doi.org/10.1111/j.1600-0889.2004.00085.x


Fu R, Zhu B, Dickinson R (1999). How do atmosphere and land surface influence seasonal changes of convection in the tropical Amazon?. Journal of Climate, 12 (5), 1306. http://dx.doi.org/10.1175/1520-0442(1999)012<1306:HDAALS>2.0.CO;2


Hou AY, Zhang SQ, da Silva AM, Olsooan WS, Kummerow CD, Simpson J (2001). Improving Global Analysis and Short-Range Forecast Using Rainfall and Moisture Observations Derived from TRMM and SSM/I Passive Microwave Sensors. Bulletin of the American Meteorological Society, 82 (4), 659. http://dx.doi.org/10.1175/1520-0477(2001)082<0659:IGAASF>2.3.CO;2


Wang H, Fu R (2000). Influences of ENSO SST anomalies and winter storm tracks on the interannual variability of upper-troposphere water vapor over the Northern Hemisphere extratropics. Journal of Climate, 13 (1), 59. http://dx.doi.org/10.1175/1520-0442(2000)013<0059:IOESAA>2.0.CO;2


Hatzianastassiou N, Fotiadi A, Matsoukas C, Pavlakis KG, Drakakis E, Hatzidimitriou D, Vardavas I (2004). Long-term global distribution of Earth's shortwave radiation budget at the top of atmosphere. Atmospheric Chemistry and Physics, 4 (5), 1217. http://dx.doi.org/10.5194/acp-4-1217-2004


Pertsev N, Dalin P (2010). Lunar semimonthly signal in cloudiness: lunar-phase or lunar-declination effect?. Journal of Atmospheric and Solar-Terrestrial Physics, 72 (10-Sep), 713. http://dx.doi.org/10.1016/j.jastp.2010.03.013


Räisänen P, Rummukainen M, Räisänen J (2000). Modification of the HIRLAM radiation scheme for use in the Rossby Centre regional Atmospheric Climate model.


Rajeevan M, Srinivasan J (2000). Net cloud radiative forcing at the top of the atmosphere in the Asian monsoon region. Journal of Climate, 13 (3), 650. http://dx.doi.org/10.1175/1520-0442(2000)013<0650:NCRFAT>2.0.CO;2


Hatzidimitriou D, Vardavas I, Pavlakis KG, Hatzianastassiou N, Matsoukas C, Drakakis E (2004). On the decadal increase in the tropical mean outgoing longwave radiation for the period 1984-2000. Atmospheric Chemistry and Physics, 4 (5), 1419. http://dx.doi.org/10.5194/acp-4-1419-2004


Wang X, Key JR (2003). Recent Trends in Arctic Surface, Cloud, and Radiation Properties from Space. Science, 299 (5613), 1725. http://dx.doi.org/10.1126/science.1078065


Matthijsen J, Slaper H, Reinen HAJM, Velders GJM (2000). Reduction of solar UV by clouds: A comparison between satellite-derived cloud effects and ground-based radiation measurements. Journal of Geophysical Research, 105 (D4), 5069. http://dx.doi.org/10.1029/1999JD900937


Sun B, Bradley RS (2004). Reply to comment by N. D. Marsh and H. Svensmark on “Solar influences on cosmic rays and cloud formation: A reassessment”. Journal of Geophysical Research, 109 (D14206), http://dx.doi.org/10.1029/2003JD004479


Jain S, Jain A.R, Mandal T.K (2013). Role of convection in hydration of tropical UTLS: implication of AURA MLS long-term observations. Annales Geophysicae, 31 (5), 967. http://dx.doi.org/10.5194/angeo-31-967-2013


Hatzianastassiou N, Katsoulis B, Vardavas I (2004). Sensitivity analysis of aerosol direct radiative forcing in ultraviolet-visible wavelengths and consequences for the heat budget. Tellus B, 56 (4), 368. http://dx.doi.org/10.1111/j.1600-0889.2004.00110.x


Laszlo I, Pinker RT (2001). Shortwave radiation budget of the Earth: Absorption and cloud radiative effects. Journal of Hungarian Meteorological Services, 106 (1), 189. Retrieved from http://cat.inist.fr/?aModele=afficheN&cpsidt=13704323


Hatzianastassiou N, Varvadas I (1999). Shortwave radiation budget of the Northern Hemisphere using International Satellite Cloud Climatology Project and NCEP/NCAR climatological data. Journal of Geophysical Research, 104 (D20), 24401. http://dx.doi.org/10.1029/1999JD900477


Fowler LD, Randall DA (1999). Simulation of upper tropospheric clouds with the Colorado State University general circulation model. Journal of Geophysical Research, 104 (D6), 6101. http://dx.doi.org/10.1029/1998JD200074


Kernthaler SC, Toumi R, Haigh JD (1999). Some doubts concerning a link between cosmic ray fluxes and global cloudiness. Geophysical Research Letters, 26 (7), 863. http://dx.doi.org/10.1029/1999GL900121


Inoue T, Kamahori H (2001). Statistical Relationship between ISCCP Cloud Type and Vertical Relative Humidity Profile. Journal of Meteorological Society of Japan, 79 (6), 1243. http://dx.doi.org/10.2151/jmsj.79.1243


Bagó PE, Butler CJ (2000). Sunshine, Clouds, and Cosmic Rays. Retrieved from http://star.arm.ac.uk/~ambn/345epb.pdf


Smith LG, Wilber AC, Gupta SK, Stackhouse PW (2002). Surface Radiation Budget and Climate Classification. Journal of Climate, 15 (10), 1175. http://dx.doi.org/10.1175/1520-0442(2002)015<1175:SRBACC>2.0.CO;2


Pavlakis KG, Hatzidimitriou D, Matsoukas C, Drakakis E, Hatzianastassiou N, Vardavas I (2004). Ten-year global distribution of downwelling longwave radiation. Atmospheric Chemistry and Physics, 4 (1), 127. http://dx.doi.org/10.5194/acp-4-127-2004


Hatzianastassiou N, Matsoukas C, Hatzidimitriou D, Pavlakis C, Drakakis M, Vardavas I (2004). Ten Year Radiation Budget of the Earth: 1984-93. International Journal of Climatology, 24 (14), 1785. http://dx.doi.org/10.1002/joc.1110


Bagó PE, Butler CJ (2000). The influence of cosmic rays on terrestrial clouds and global warming. Astronomy & Geophysics, 41 (4), 18. http://dx.doi.org/10.1046/j.1468-4004.2000.00418.x


Hatzianastassiou N, Varvadas I (1999). The net radiation budget of the Northern Hemisphere. Journal of Geophysical Research, 104 (D22), 27341. http://dx.doi.org/10.1029/1999JD900771


Jenkins GS, Mohr K, Morris VR, Arino O (1997). The role of convective processes over the Zaire-Congo Basin to the southern hemispheric ozone maximum. Journal of Geophysical Research, 102 (D15), 18963. http://dx.doi.org/10.1029/97JD01018


Svensmark H, Friis-Christensen E (1997). Variation of cosmic ray flux and global cloud coverage -- a missing link in solar-climate relationships. Journal of Atmospheric and Solar-Terrestrial Physics, 59 (11), 1225. http://dx.doi.org/10.1016/S1364-6826(97)00001-1


Collection Disciplines Spatial Temporal
ISCCP_D2_1
International Satellite Cloud Climatology Project (ISCCP) Stage D2 Monthly Cloud Products - Revised Algorithm in Hierarchical Data Format
Clouds,  Radiation Budget Spatial Coverage:
(-90, 90), (-180, 180)
Temporal Coverage:
1983-07-01 - 2009-12-31
Temporal Resolution:
Monthly
ISCCP_ICESNOW_NAT_1
International Satellite Cloud Climatology Project (ISCCP) Ice Snow Product in Native Data Format
Clouds,  Radiation Budget Spatial Coverage:
(-90, 90), (-180, 180)
Temporal Coverage:
1983-07-03 - 2009-12-28
Temporal Resolution:
Weekly
ISCCP_TOVS_NAT_1
International Satellite Cloud Climatology Project (ISCCP) TOVS in Native Data Format
Clouds,  Radiation Budget Spatial Coverage:
(-90, 90), (-180, 180)
Temporal Coverage:
1980-01-01 - 2009-12-31
Temporal Resolution:
Daily
Collection Disciplines Spatial Temporal
ISCCP_DX_1
International Satellite Cloud Climatology Project (ISCCP) Stage DX Pixel Level Cloud Product - Revised Algorithm in Hierarchical Data Format
Clouds,  Radiation Budget Spatial Coverage:
(-90, 90), (-180, 180)
Temporal Coverage:
1983-06-30 - 2009-12-31
Temporal Resolution:
3 Hours
Collection Disciplines Spatial Temporal
ISCCP_B3_NAT_1
International Satellite Cloud Climatology Project (ISCCP) Stage B3 Reduced Radiances in Native Format
Clouds,  Radiation Budget Spatial Coverage:
(-90, 90), (-180, 180)
Horizontal Resolution Range:
10 km - < 50 km or approximately .09 degree - < .5 degree
Temporal Coverage:
1983-07-01 - 2009-12-31
Temporal Resolution Range:
Hourly - < Daily
Temporal Resolution:
3 Hours
Collection Disciplines Spatial Temporal
ISCCP_D1_1
International Satellite Cloud Climatology Project (ISCCP) Stage D1 3-Hourly Cloud Products - Revised Algorithm in Hierarchical Data Format
Clouds,  Radiation Budget Spatial Coverage:
(-90, 90), (-180, 180)
Temporal Coverage:
1983-07-01 - 2009-12-31
Temporal Resolution Range:
Hourly - < Daily
Temporal Resolution:
Monthly