ObseRvations of Aerosols above CLouds and their intEractionS

Southern Africa produces almost one-third of the Earth’s biomass burning aerosol particles. The ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) experiment was a five year investigation with three intensive observation periods (August 19, 2016 – October 27, 2016; August 1, 2017 – September 4, 2017; September 21, 2018 – October 27, 2018) and was designed to study key processes that determine the climate impacts of African biomass burning aerosols. ORACLES provided multi-year airborne observations over the complete vertical column of the key parameters that drive aerosol-cloud interactions in the southeast Atlantic, an area with some of the largest inter-model differences in aerosol forcing assessments. These inter-model differences in aerosol and cloud distributions, as well as their combined climatic effects in the SE Atlantic are partly due to the persistence of aerosols above clouds. The varying separation of cloud and aerosol layers sampled during ORACLES allow for a process-oriented understanding of how variations in radiative heating profiles impact cloud properties, which is expected to improve model simulations for other remote regions experience long-range aerosol transport above clouds. ORACLES utilized two NASA aircraft, the P-3 and ER-2. The P-3 was used as a low-flying platform for simultaneous in situ and remote sensing measurements of aerosols and clouds in all three campaigns, supplemented by ER-2 remote sensing in 2016. ER-2 observations will be used to enhance satellite-based remote sensing by resolving variability within a particular scene, and by guiding the development of new and improved remote sensing techniques.

DOI: 10.5067/SUBORBITAL/ORACLES/DATA001

For more information regarding the Airborne Multi-angle SpectroPolarimetric Imager (AirMSPI) data collected during ORACLES, please refer to: AirMSPI ORACLES Ellipsoid Data, AirMSPI ORACLES Terrain Data, and AirMSPI Cloud Droplet Size and Cloud Optical Depth Product.

Disciplines:   Field Campaigns

ORACLES Publications

Miller R M, McFarquhar G M, Rauber R M, O’Brien J R, Gupta S, Segal-Rozenhaimer M, Dobracki A N, Delacek A J, burton S P, Howell S G, Freitag S, and Dang C (). Observations of supermicron-sized aerosols originating from biomass burning in southern Central Africa. Atmospheric Chemistry and Physics, 21 (19), 14815. http://dx.doi.org/10.5194/acp-21-14815-2021


Dobracki A, Zuidema P, Howell S, Saide P, Freitag S, Aiken A, Burton S, Sedlacek A, Redemann J, and Wood R (2022). An attribution of the low single-scattering albedo of biomass-burning aerosol over the southeast Atlantic. Atmospheric Chemistry and Physics, http://dx.doi.org/10.5194/acp-2022-501


Che H, Stier P, Watson-Parris D, Gordon H, and Deaconu L (2022). Source attribution of cloud condensation nuclei and their impact on stratocumulus clouds and radiation in the south-eastern Atlantic. Atmospheric Chemistry and Physics, 22 (16), 10789. http://dx.doi.org/10.5194/acp-2022-43


Che H, Segal-Rozenhaimer M, Zhang L, Dang C, Zuidema P, Dobracki A, Sedlacek III A J, Coe H, Wu H, Taylor J, Zhang X, redemann J, and Haywood J (2022). Cloud processing and weeklong ageing affect biomass burning aerosol properties over the south-eastern Atlantic. Communications: Earth & Environment, 3 (182), http://dx.doi.org/10.1038/s43247-022-00517-3


Harshvardhan H, Ferrare R, Burton S, Hair J, Hostetler C, Harper D, Cook A, Fenn M, Scarino A J, Chemyakin E, and Müller D (2022). Vertical structure of biomass burning aerosol transported over the southeast Atlantic Ocean. Atmospheric Chemistry and Physics, 22 (15), 9859. http://dx.doi.org/10.5194/acp-22-9859-2022


Dang C, Segal-Rozenhaimer M, Che H, Zhang L, Formenti P, Taylor J, Dobracki A, Purdue S, (2022). Biomass burning and marine aerosol processing over the southeast Atlantic Ocean: a TEM single-particle analysis. Atmospheric Chemistry and Physics, 22 (14), 9389. http://dx.doi.org/10.5194/acp-22-9389-2022


Zhang L, Segal-Rozenhaimer M, Che H, Dang C, Sedlacek III A J, Lewis E R, Dobracki A, Wong J P S, Formenti P, Howell S G, and Nenes A (2022). Light absorption by brown carbon over the South-East Atlantic Ocean. Atmospheric Chemistry and Physics, 22 (14), 9199. http://dx.doi.org/10.5194/acp-22-9199-2022


Diamond M S, Saide P E, Zuidema P, Ackerman A S, Doherty S J, Fridlind A M, Gordon Howes C, Kazil J, Yamaguchi T, Zhang J, Feingold G, and Wood R (2022). Cloud adjustments from large-scale smoke-circulation interactions strongly modulate the southeast Atlantic stratocumulus-to-cumulus transition. Atmospheric Chemistry and Physics Discussions, http://dx.doi.org/10.5194/acp-2022-411


Gupta S, McFarquhar G M, O’Brien J R, Poellot M R, Delene D J, Chang I, gao L, Xu F, and Redemann J (2022). In Situ and Satellite-based Estimates of Cloud Properties and Aerosol-Cloud Interactions over the Southeast Atlantic Ocean. Atmospheric Chemistry and Physics, http://dx.doi.org/10.5194/acp-2022-374


Ryoo J M, Pfister L, Ueyama R Zuidema P, Wood R, Chang I, and Redemann J (2022). A meteorological overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) campaign over the southeast Atlantic during 2016–2018: Part 2 – daily and synoptic characteristics. Atmospheric Chemistry and Physics Discussions, http://dx.doi.org/10.5194/acp-2022-256


Henze D, Noone D, and Toohey D (2022). Aircraft measurements of water vapor heavy isotope ratios in the marine boundary layer and lower troposphere during ORACLES. Earth Systems Science Data, 14 (4), 1811. http://dx.doi.org/10.5194/essd-14-1811-2022


Barrett P A, Abel S J, Coe H, Crawford I, Dobracki A, Haywood J M, Howell S, Jones A, Langridge J, McFaquhar G, Nott G, Price H, Redemann J, Shinozuka Y, Szpek K, Taylor J, Wood R, Wu H, Zuidema P, Bauguette S, Bennet R, Bower K, Chen H, Cochrane S P, Cotterell M, Davies N, Delene D, Flynn C, Fredman A, Freitag S, Gupta S, Noone D, Onasch T B, Podolske J, Poellot M R, Schmidt S K, Springston S, Sedlacek III A J, Trembath J, Vance A, Zawadowicz M, and Zhang J (2022). Intercomparison of airborne and surface-based measurements during the CLARIFY, ORACLES and LASIC field experiments. Atmospheric Measurement Techniques, http://dx.doi.org/10.5194/amt-2022-59


Gupta S, McFarquhar G M, O’Brien J R, Poellot M R, Delene D J, Miller R M, and Small Griswold J D (2022). Factors affecting precipitation formation and precipitation susceptibility of marine stratocumulus with variable above- and below-cloud aerosol concentrations over the Southeast Atlantic. Atmospheric Chemistry and Physics, 22 (4), 2769. http://dx.doi.org/10.5194/acp-22-2769-2022


Cochrane S P, Schmidt K S, Chen H, Pilewskie P, Kittelman S, Redemann J, LeBlanc S, Pistone K, Segal-Rozenhaimer M, Kacenelenbogen M, Shinozuka Y, Flynn C, Ferrare R, Burton S, Hostetlers C, Mallet M, and Zuidema P (2022). Biomass burning aerosol heating rates from the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) 2016 and 2017 experiments. Atmospheric Measurement Techniques, 15 (1), 61. http://dx.doi.org/10.5194/amt-15-61-2022


Doherty D J, Saide P E, Zuidema P, Shinozuka Y, Ferrada G A, Gordon H, Mallet M, Meyer K, Painemal D, Howell S G, Fritag S, Sobracki A, Podolske J R, Burton S P, Ferrare R A, Howes C, Nabat P, Carmichael G R, da Silva A, Pistone K, Chang I, Gao L, Wood R, and Redemann J (2022). Modeled and observed properties related to the direct aerosol radiative effect of biomass burning aerosol over the southeastern Atlantic. Atmospheric Chemistry and Physics, 22 (1), 1. http://dx.doi.org/10.5194/acp-22-1-2022


Siméon A, Waquet F, Péré J, Ducos F, Thieuleux F, Peers F, Turquety S, and Chiapello I (2021). Combining POLDER-3 satellite observations and WRF-Chem numerical simulations to derive biomass burning aerosol properties over the southeast Atlantic region. Atmospheric Chemistry and Physics, 21 (23), 17775. http://dx.doi.org/10.5194/acp-21-17775-2021


Gaetani M, Pohl B, del Carmen Alvarez Castro M, Flamant C, and Formenti P (2021). A weather regime characterisation of winter biomass aerosol transport from southern Africa. Atmospheric Chemistry and Physics, 21 (21), 16575. http://dx.doi.org/10.5194/acp-21-16575-2021


Howell S G, Freitag S, Dobracki A, Smirnow N, and Sedlacek III A J (2021). Undersizing of aged African biomass burning aerosol by an ultra-high-sensitivity aerosol spectrometer. Atmospheric Measurement Techniques, 14 (11), 7381. http://dx.doi.org/10.5194/amt-14-7381-2021


Ding K, Huan Z, Ding A, Wang M, Su H, Kerminen V, Petäjä T, Tan Z, Wang Z, Zhou D, Sun J, Liao H, Wang H, Carslaw K, Wood R, Zuidema P, Rosenfeld D, Kulmala M, Fu C, Pöschl U, Cheng Y, and Andreae M O (2021). Aerosol-boundary-layer-monsoon interactions amplify semi-direct effect of biomass smoke on low cloud formation in Southeast Asia. Nature Communications, 12 http://dx.doi.org/10.1038/s41467-021-26728-4


Ding K, Huan Z, Ding A, Wang M, Su H, Kerminen V, Petäjä T, Tan Z, Wang Z, Zhou D, Sun J, Liao H, Wang H, Carslaw K, Wood R, Zuidema P, Rosenfeld D, Kulmala M, Fu C, Pöschl U, Cheng Y, and Andreae M O (2021). Aerosol-boundary-layer-monsoon interactions amplify semi-direct effect of biomass smoke on low cloud formation in Southeast Asia. Nature Communications, 12 http://dx.doi.org/10.1038/s41467-021-26728-4


Mallet M, Nebat P, Johnson B, Michou M, Haywood J M, Chen C, and Dubovik O (2021). Climate models generally underrepresent the warming by Central Africa biomass-burning aerosols over the Southeast Atlantic. Science Advances, 7 (41), http://dx.doi.org/10.1126/sciadv.abg9998


Liu Z, Osborne M, Anderson K, Shutler J D, Wilson A, Langridge J, Yim S H L, Coe H, Babu S, Satheesh S K, Zuidema P, Huang T, Cheng J C H, and Haywood J (2021). Characterizing the performance of a POPS miniaturized optical particle counter when operated on a quadcopter drone. Atmospheric Measurement Techniques, 14 (9), 6101. http://dx.doi.org/10.5194/amt-14-6101-2021


Carter T S, Heald C L, Cappa C D, Kroll J H, Campos T L, Coe H, Cotterell M I, Davies N W, Farmer D K, Fox C, Garofalo L A, Hu L, Langridge J M, Levin E J T, Murphy S M, Pokhrel R P, Shen Y, Szpek K, Taylor J W, and Wu H (2021). Investigating Carbonaceous Aerosol and Its Absorption Properties From Fires in the Western United States (WE-CAN) and Southern Africa (ORACLES and CLARIFY). Journal of Geophysical Research: Atmospheres, 126 (15), http://dx.doi.org/10.1029/2021JD034984


Pistone K, Zuidema P, Wood R, Diamond M, da Silva A M, Ferrada G, Saide P E, Ueyama R, Ryoo J, Pfister L, Podolske J, Noone D, Bennett R, Stith E, Charmichael G, Redemann J, Flynn C, LeBlanc S, Segal-Rozenhaimer M, and Shinozuka Y (2021). Exploring the elevated water vapor signal associated with the free tropospheric biomass burning plume over the southeast Atlantic Ocean. Atmospheric Chemistry and Physics, 21 (12), 9643. http://dx.doi.org/10.5194/acp-21-9643-2021


Sinclair K, van Diedenhoven B, Cairns B, Alexandrov M, Dzambo A M, and L’Ecuyer T (2021). Inference of Precipitation in Warm Stratiform Clouds Using Remotely Sensed Observations of the Cloud Top Droplet Size Distribution. Geophysical Research Letters, 48 (10), http://dx.doi.org/10.1029/2021GL092547


Xu F, Gao L, Redemann J, Flynn C J, Espinosa W R, da Silva A M, Stamnes S, Burton S P, Liu X, Ferrare R, Cairnes B, and Dubovik O (2021). A Combined Lidar-Polarimeter Inversion Approach for Aerosol Remote Sensing Over Ocean. Frontiers in Remote Sensing, http://dx.doi.org/10.3389/frsen.2021.620871


Dzambo A M, L’Ecuyer T, Sinclair K, van Diedenhoven B, Gupta S, McFarquhar G, O’Brien J R, Cairns B, Wasilewski A P, and Alexandrov M (2021). Joint cloud water path and rainwater path retrievals from airborne ORACLES observations. Atmospheric Chemistry and Physics, 21 (7), 5513. http://dx.doi.org/10.5194/acp-21-5513-2021


Zhang J and Zuidema P (2021). Sunlight-absorbing aerosol amplifies the seasonal cycle in low cloud fraction over the southeast Atlantic. Atmospheric Chemistry and Physics, 1. http://dx.doi.org/10.5194/acp-2021-275


Ryoo J, Pfister L, Ueyama R, Zuidema P, Wood R, Chang I, and Redemann J (2021). A meteorological overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) campaign over the southeast Atlantic during 2016-2018. Atmospheric Chemistry and Physics, 1. http://dx.doi.org/10.5194/acp-2021-274


Gupta S, McFarquhar G M, O’Brien J R, Delene S J, Poellot M R, Dobracki A, Podolske J R, Redemann J, LeBlanc S E, Segal-Rozenhaimer M, and Pistone K (2021). Impact of the variability in vertical separation between biomass burning aerosols and marine stratocumulus on cloud microphysical properties over the Southeast Atlantic. Atmospheric Chemistry and Physics, 21 (6), 4615. http://dx.doi.org/10.5194/acp-21-4615-2021


Chang I, Gao L, Burton S P, Chen H, Diamond M S, Ferrare R A, Flynn C J, Kacenelenbogen M, LeBlanc S E, Meyer K G, Pistone K, Schmidt S, Segal-Rozenhaimer M, Shinozuka Y, Wood R, Zuidema P, Redemann J, and Christopher S A (2021). Spatiotemporal Heterogeneity of Aerosol and Cloud Properties Over the Southeast Atlantic: An Observational Analysis. Geophysical Research Letters, 48 (7), http://dx.doi.org/10.1029/2020GL091469


Peers F, Francis P, Abel S J, Berrett P A, Bower K N, Cotterell M I, Crawford I, Davies N W, Fox C, Fox S, Langridge J M, Meyer K G, Platnick S E, Szpek K, and Haywood J M (2021). Observation of absorbing aerosols above clouds over the south-east Atlantic Ocean from the geostationary satellite SEVIRI – Part 2: Comparison with MODIS and aircraft measurements from the CLARIFY-2017 field campaign. Atmospheric Chemistry and Physics, 21 (4), 3235. http://dx.doi.org/10.5194/acp-21-3235-2021


Redemann J, Wood R, Zuidema P, Doherty S J, Luna B, LeBlanc S E, Diamond M S, Shinozuka Y, Chang I Y, Ueyama R, Pfister L, Ryoo J-M, Dobracki A N, da Silva A M, Longo K M, Kacenelenbogen M S, Flynn C J, Pistone K, Knox N M, Piketh S J, Haywood J M, Formenti P, Mallet M, Stier P, Ackerman A S, Bauer S E, Fridlind A M, Carmichael G R, Saide P E, Ferrada G A, Howell S G, Freitag S, Cairns B, Holben B N, Knobelspiesse K D, Tanelli S, L’Ecuyer T S, Dzambo A M, Sy O O, McFarquhar G M, Poellot M R, Gupta S, et al. (2021). An overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) project: aerosol–cloud–radiation interactions in the southeast Atlantic basin. Atmospheric Chemistry and Physics, 21 (3), 1507. http://dx.doi.org/10.5194/acp-21-1507-2021


Cochrane S P, Schmidt K S, Chen H, Pilewskie P, Kittelman S, Redemann J, LeBlanc S, Pistone K, Kacenelenbogen M, Rozenhaimer S, Shinozuka Y, Flynn C, Dobracki A, Zuidema P, Howell S, Freitag S, and Doherty S (2021). Empirically derived parameterizations of the direct aerosol radiative effect based on ORACLES aircraft observations. Atmospheric Measurement Techniques, 14 (1), 567. http://dx.doi.org/10.5194/amt-14-567-2021


Haywood J M, Abel S K, Barrett P A, Bellouin N, Blyth A, Bower K N, Brooks M, Carslaw K, Che H, Coe H, Cotterell M I, Crawford I, Cui Z, Davies N, Dingley B, Field P, Formenti P, Gordon H, de Graaf M, Herbert R, Jonson B, Jones A C, Langridge J M, Malavelle F, Patidge D G, Peers F, Redemann J, Stier P, Szpek K, Taylor J W, Watson-Parris D, Wood R, Wu H, and Zuidema P (2021). The CLoud–Aerosol–Radiation Interaction and Forcing: Year 2017 (CLARIFY-2017) measurement campaign. Atmospheric Chemistry and Physics, 21 (2), 1049. http://dx.doi.org/10.5194/acp-21-1049-2021


Che H, Stier P, Gordon H, Watson-Parris D, and Deaconu L (2021). Cloud adjustments dominate the overall negative aerosol radiative effects of biomass burning aerosols in UKESM1 climate model simulations over the south-eastern Atlantic. Atmospheric Chemistry and Physics, 21 (1), 17. http://dx.doi.org/10.5194/acp-21-17-2021


Mallet M, Solmon F, Nabat P, Elguindi N, Waquet F, Bounil D, Sayer A M, Meyer K, Roehrig R, Michou M, Zuidema P, Flamant C, Redemann J, and Formenti P (2020). Direct and semi-direct radiative forcing of biomass-burning aerosols over the southeast Atlantic (SEA) and its sensitivity to absorbing properties: a regional climate modeling study. Atmospheric Chemistry and Physics, 20 (21), 13191. http://dx.doi.org/10.5194/acp-20-13191-2020


Shinozuka Y, Saide P E, Ferrada G A, Burton S P, Ferrare R, Doherty S J, Gordon H, Longo K, Mallet M, Feng Y, Want Q, Cheng Y, Dobracki A, Freitag S, Howell S G, LeBlanc S, Flynn C, Segal-Rosenhaimer M, Pistone K, Podolske J R, Stith E J, Bennett J R, Carmichael G R, da Silva A, Govindaraju R, Leung R, Zhang Y, Pfister L, Ryoo J, Redemann J, Wood R, and Zuidema P (2020). Modeling the smoky troposphere of the southeast Atlantic: a comparison to ORACLES airborne observations from September of 2016. Atmospheric Chemistry and Physics, 20 (19), 11526. http://dx.doi.org/10.5194/acp-20-11491-2020


Shinozuka Y, Kacenlenbogen M S, Burton S P, Howell S G, Zuidema P, Ferrare R A, LeBlanc S E, Pistone K, Broccardo S, Redemann J, Schmidt K S, Cochrane S P, Fenn M, Freitag S, Dobracki A, Segal Rosenheimer M, and Flynn C J (2020). Daytime aerosol optical depth above low-level clouds is similar to that in adjacent clear skies at the same heights: airborne observation above the southeast Atlantic. Atmospheric Chemistry and Physics, 20 (19), 11275. http://dx.doi.org/10.5194/acp-20-11275-2020


Adebiyi A A, Zuidema P, Chang I, Burton S P, and Cairns B (2020). Mid-level clouds are frequent above the southeast Atlantic stratocumulus clouds. Atmospheric Chemistry and Physics, 20 (18), 11025. http://dx.doi.org/10.5194/acp-20-11025-2020


Matheou G, Davis A B, and Teixeira J (2020). The Spiderweb Structure of Stratocumulus Clouds. Atmosphere, 11 (7), 730. http://dx.doi.org/10.3390/atmos11070730


Miller D J, Segal-Rozenhaimer M, Knobelspiesse K, Redemann J, Cairns B, Alexandrov M, van Diedenhove B, and Wasilewski A (2020). Low-level liquid cloud properties during ORACLES retrieved using airborne polarimetric measurements and a neural network algorithm. Atmospheric Measurement Techniques, 13 (6), 3447. http://dx.doi.org/10.5194/amt-13-3447-2020


Herman R L, Worden J, Noone D, Henze D, Bowman K, Cady-Pereira K, Payne V H, Kulawik S S, and Fu D (2020). Comparison of optimal estimation HDO∕H2O retrievals from AIRS with ORACLES measurements. Atmospheric Chemistry and Physics, 13 (4), 1825. http://dx.doi.org/10.5194/amt-13-1825-2020


Abel A J, Barrett P A, Zuidema P, Zhang J, Christensen M, Peers F, Taylor J W, Crawford I, Bower K N, and Flynn M (2020). Open cells exhibit weaker entrainment of free-tropospheric biomass burning aerosol into the south-east Atlantic boundary layer. Atmospheric Chemistry and Physics, 20 (7), 4059. http://dx.doi.org/10.5194/acp-20-4059-2020


Diamond M S, Director H M, Eastman R, Possner A, and Wood R (2020). Substantial Cloud Brightening From Shipping in Subtropical Low Clouds. American Geophysical Union Advances, 1 (1), http://dx.doi.org/10.1029/2019AV000111


Kacarab M, Thronhill K L, Dobracki A, Howell S G, O’Brien J R, Freitag S, Poellot M R, Wood R, Zuidema P, Redemann J, and Nenes A (2020). Biomass burning aerosol as a modulator of the droplet number in the southeast Atlantic region. Atmospheric Chemistry and Physics, 20 (5), 3029. http://dx.doi.org/10.5194/acp-20-3029-2020


Das S, Colarco P R, and Hashvardhan H (2020). The Influence of Elevated Smoke Layers on Stratocumulus Clouds Over the SE Atlantic in the NASA Goddard Earth Observing System (GEOS) Model. Journal of Geophysical Research: Atmospheres, 125 (6), http://dx.doi.org/10.1029/2019JD031209


Pennypacker S, Diamond M, and Wood R (2020). Ultra-clean and smoky marine boundary layers frequently occur in the same season over the southeast Atlantic. Atmospheric Chemistry and Physics, 20 (4), 2341. http://dx.doi.org/10.5194/acp-20-2341-2020


LeBlanc S, Redemann J, Flynn C, Pistone K, Kacenelenbogen M, Segal-Rosenheimer M, Shinozuka Y, Dunagan S, Dahlgren R P, Meyer K, Podolske J, Howell S G, Freitag S, Small-Griswold J, Holben B, Diamond M, Wood R, Formenti P, Piketh S, Maggs-Kölling G, Gerber M, and Nomwoonde A (2020). Above-cloud aerosol optical depth from airborne observations in the southeast Atlantic. Atmospheric Chemistry and Physics, 20 (3), 1565. http://dx.doi.org/10.5194/acp-20-1565-2020


Cochran S P, Schmidt K S, Chen H, Pilewskie P, Kittelman S, Redemann J, LeBlanc S, Pistone K, Kacenlenbogen M, Rozenhaimer M S, Shinozuka Y, Glynn C, Platnick S, Meyer K, Ferrare R, Burton S, Hostetler C, Howell S, Freitag S, Dobracki A, and Doherty S (2019). Above-cloud aerosol radiative effects based on ORACLES 2016 and ORACLES 2017 aircraft experiments. Atmospheric Measurement Techniques, 12 (12), 6505. http://dx.doi.org/10.5194/amt-12-6505-2019


Zhang J and Zuidema P (2019). The diurnal cycle of the smoky marine boundary layer observed during August in the remote southeast Atlantic. Atmospheric Chemistry and Physics, 19 (23), 14493. http://dx.doi.org/10.5194/acp-19-14493-2019


Dzambo A M, L’Ecuyer T, Sy O O, and Tanelli S (2019). The Observed Structure and Precipitation Characteristics of Southeast Atlantic Stratocumulus from Airborne Radar during ORACLES 2016–17. Journal of Applied Meteorology and Climatology, 58 (10), 2197. http://dx.doi.org/10.1175/JAMC-D-19-0032.1


Pistone K, Redemann J, Doherty S, Zuidema P, Burton S, Cairns B, Cochrane S, Ferrare R, Flynn C, Frietag S, Howell S G, Kacenelenbogen M, LeBlanc S, Liu X, Schmidt K S, Sedlacek III A J, Segal-Rozenhaimer M, Shinozuka Y, Stamnes S, van Diedenhoven B, Van Harten G, and Xu F (2019). Intercomparison of biomass burning aerosol optical properties from in situ and remote-sensing instruments in ORACLES-2016. Atmospheric Chemistry and Physics, 19 (14), 9181. http://dx.doi.org/10.5194/acp-19-9181-2019


Sayer A M, Hsu N C, Lee J, Kim W V, Burton S, Fenn M A, Ferrare R A, Kacenelenbogen M, LeBlanc S, Pistone K, Redemann J, Segal-Rozenhaimer M, Shinozuka Y, and Tsay S (2019). Two decades observing smoke above clouds in the south-eastern Atlantic Ocean: Deep Blue algorithm updates and validation with ORACLES field campaign data. Atmospheric Measurement Techniques, 12 (7), 3595. http://dx.doi.org/10.5194/amt-12-3595-2019


Mallet M, Nabat P, Zuidema P, Redemann J, Sayer A M, Stengel M, Schmidt S, Cochrane S, Burton S, Ferrare R, Meyer K, Saide P, Jethva H, Torres O, Wood R, Saint Martin D, Roehrig R, Hsu C, and Formenti P (2019). Simulation of the transport, vertical distribution, optical properties and radiative impact of smoke aerosols with the ALADIN regional climate model during the ORACLES-2016 and LASIC experiments. Atmospheric Chemistry and Physics, 19 (7), 4963. http://dx.doi.org/10.5194/acp-19-4963-2019


Segal-Rozenhaimer M, Miller D J, Knobelspiesse K, Redemann J, Cairns B, and Alexandrov M D (2018). Development of neural network retrievals of liquid cloud properties from multi-angle polarimetric observations. Journal of Quantitative Spectroscopy and Radiative Transfer, 220 39. http://dx.doi.org/10.1016/j.jqsrt.2018.08.030


Jethva H, Torres O, and Ahn C (2018). A 12-year long global record of optical depth of absorbing aerosols above the clouds derived from the OMI/OMACA algorithm. Atmospheric Measurement Techniques, 11 (10), 5837. http://dx.doi.org/10.5194/amt-11-5837-2018


Diamond M S, Dobracki A, Freitag S, Small-Griswold J D, Heikkila A, Howell S G, Kacarab M E, Podolske J R, Saide P E, and Wood R (2018). Time-dependent entrainment of smoke presents an observational challenge for assessing aerosol–cloud interactions over the southeast Atlantic Ocean. Atmospheric Chemistry and Physics, 18 (19), 14623. http://dx.doi.org/10.5194/acp-18-14623-2018


Kar J, Vaughan M, Tackett J, Liu Z, Omar A, Rodier S, Trepte C, and Lucker P (2018). Swelling of transported smoke from savanna fires over the Southeast Atlantic Ocean. Remote Sensing of Environment, 211 (15), 105. http://dx.doi.org/10.1016/j.rse.2018.03.043


Adebiyi A and Zuidema P (2018). Low Cloud Cover Sensitivity to Biomass-Burning Aerosols and Meteorology over the Southeast Atlantic. Journal of Climate, 31 (11), 4329. http://dx.doi.org/10.1175/JCLI-D-17-0406.1


Xu F, va Harten G, Diner D K, Davis A B, Seidel F C, Rheingans B, Tosca M, Alexandrov M D, Cairns B, Ferrare R A, Burton S P, Fenn M A, Hostetler C A, Wood R, and Redemann J (2018). Coupled Retrieval of Liquid Water Cloud and Above-Cloud Aerosol Properties Using the Airborne Multiangle SpectroPolarimetric Imager (AirMSPI). Journal of Geophysical Research, Atmospheres, 123 (6), 3175. http://dx.doi.org/10.1002/2017JD027926


Holben B N, Kim J, Sano I, Mukai S, Eck T F, Giles D M, Schafer J S, Sinyuk A, Slutsker I, Smirnov A, Sorokin M, Anderson B E, Che J, Choi M, Crawford J H, Ferrare R A, Garay M J, Jeong U, Kim, M, Kim W, Knox N, Li Z, Lim H S, Liu Y, Maring H, Nakata M, Pickering K E, Piketh S, Redemann J, Reid J S, Salinas S, Seo S, Tan F, Tripathi S N, Toon O B, and Xiao Q (2018). An overview of mesoscale aerosol processes, comparisons, and validation studies from DRAGON networks. Atmospheric Chemistry and Physics, 18 (2), 655. http://dx.doi.org/10.5194/acp-18-655-2018


Burton S P, Hostetler C A, Cook A L, Hair J W, Seaman S T, Scola S, Harper D B, Smith J A, Fenn M A, Ferrare R A, Saide P E, Chemyakin E V, and Müller D (2018). Calibration of a high spectral resolution lidar using a Michelson interferometer, with data examples from ORACLES. Applied Optics, 57 (21), 6061. http://dx.doi.org/10.1364/AO.57.006061


Zhou X, Ackerman A S, Fridlind A M, Wood R, and Pavlos K (2017). Impacts of solar-absorbing aerosol layers on the transition of stratocumulus to trade cumulus clouds. Atmospheric Chemistry and Physica, 17 (20), 12725. http://dx.doi.org/10.5194/acp-17-12725-2017


Zuidema P, Redemann J, Haywood J, Wood R, Piketh S, Hipondoka M, and Formenti P (2016). Smoke and Clouds above the Southeast Atlantic: Upcoming Field Campaigns Probe Absorbing Aerosol’s Impact on Climate. Bulletin of the American Meteorological Society, 97 (7), 1131. http://dx.doi.org/10.1175/BAMS-D-15-00082.1


Collection Disciplines Spatial Temporal
ORACLES_Model_Data_1
ORACLES Model Derived Measurements
Aerosols Spatial Coverage:
(-77, 39), (-77, 39)
Temporal Coverage:
2016-08-27 - 2018-10-27
Collection Disciplines Spatial Temporal
ORACLES_Merge_Data_1
ORACLES Merge Data Files
Aerosols,  Clouds,  Tropospheric Composition,  Field Campaigns Spatial Coverage:
(-35, 41), (-126, 14)
Temporal Coverage:
2016-07-28 - 2019-03-23
Collection Disciplines Spatial Temporal
ORACLES_Aerosol_AircraftInSitu_Data_1
ORACLES Aerosol Aircraft InSitu Data
Aerosols,  Field Campaigns Spatial Coverage:
(-35, 40), (-77, 20)
Temporal Coverage:
2016-08-24 - 2018-10-27
Temporal Resolution:
Variable
ORACLES_AerosolCloud_AircraftRemoteSensing_Data_1
ORACLES Aerosol Cloud Aircraft Remote Sensing Data
Aerosols,  Clouds,  Field Campaigns Spatial Coverage:
(-76, 45), (-126, 40)
Temporal Coverage:
2016-07-28 - 2019-03-23
Temporal Resolution:
Variable
ORACLES_Cloud_AircraftInSitu_Data_1
ORACLES Cloud Aircraft InSitu Data
Clouds,  Field Campaigns Spatial Coverage:
(-78, 40), (-78, 119.5)
Temporal Coverage:
2016-08-24 - 2018-10-28
Temporal Resolution:
Variable
ORACLES_MetNav_AircraftInSitu_Data_1
ORACLES Navigational and Meteorological Data
Field Campaigns Spatial Coverage:
(-70, 41), (-77, 40)
Temporal Coverage:
2016-08-02 - 2018-10-27
Temporal Resolution:
Variable
ORACLES_Radiation_AircraftInSitu_Data_1
ORACLES Radiation Aircraft InSitu Data
Radiation Budget,  Field Campaigns Spatial Coverage:
(-77, 40), (-77, 40)
Temporal Coverage:
2016-08-30 - 2018-10-27
Temporal Resolution:
Variable
ORACLES_TraceGas_AircraftInSitu_Data_1
ORACLES Trace Gas Aircraft InSitu Data
Field Campaigns Spatial Coverage:
(-77, 39), (-77, 40)
Temporal Coverage:
2016-08-24 - 2018-10-23
Temporal Resolution:
Variable