Tropospheric Ozone Lidar Network

In the troposphere, ozone is considered a pollutant and is important to understand due to its harmful effects on human health and vegetation. Tropospheric ozone is also significant for its impact on climate as a greenhouse gas. Operating since 2011, The Tropospheric Ozone Lidar Network (TOLNet) is an interagency collaboration between NASA, NOAA, and the EPA designed to perform studies of air quality and atmospheric modeling as well as validation and interpretation of satellite observations. TOLNet is currently comprised of seven Differential Absorption Lidars (DIAL). Each of the lidars are unique, and some have had a long history of ozone observations prior to joining the network. Five lidars are mobile systems that can be deployed at remote locations to support field campaigns. This includes the Langley Mobile Ozone Lidar (LMOL) at NASA Langley Research Center (LaRC), the Tropospheric Ozone (TROPOZ) lidar at the Goddard Space Flight Center (GSFC), the Tunable Optical Profile for Aerosol and oZone (TOPAZ) lidar at the NOAA Chemical Sciences Laboratory (CSL) in Boulder, Colorado, the Autonomous Mobile Ozone LIDAR instrument for Tropospheric Experiments (AMOLITE) lidar at Environment and Climate Change Canada (ECCC) in Toronto, Canada, and the Rocket-city O3 Quality Evaluation in the Troposphere (RO3QET) lidar at the University of Alabama in Huntsville, Alabama. The remaining lidars, the Table Mountain Facility (TMF) tropospheric ozone lidar system located at the NASA Jet Propulsion Laboratory (JPL), and City College of New York (CCNY) New York Tropospheric Ozone Lidar System (NYTOLS) are fixed systems.

TOLNet seeks to address three science objectives. The primary objective of the network is to provide high spatio-temporal measurements of ozone from near the surface to the top of the troposphere. Detailed observations of ozone structure allow science teams and the modeling community to better understand ozone in the lower-atmosphere and to assess the accuracy and vertical resolution with which geosynchronous instruments could retrieve the observed laminar ozone structures. Another objective of TOLNet is to identify an ozone lidar instrument design that would be suitable to address the needs of NASA, NOAA, and EPA air quality scientists who express a desire for these ozone profiles. The third objective of TOLNET is to perform basic scientific research into the processes create and destroy the ubiquitously observed ozone laminae and other ozone features in the troposphere. To help fulfill these objectives, lidars that are a part of TOLNet have been deployed to support nearly ten campaigns thus far. This includes campaigns such as the Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) mission, the Korea United States Air Quality Study (KORUS-AQ), the Tracking Aerosol Convection ExpeRiment – Air Quality (TRACER-AQ) campaign, the Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ), the Long Island Sound Tropospheric Ozone Study (LISTOS), and the Ozone Water–Land Environmental Transition Study (OWLETS).

For more information regarding the field campaigns TOLNet has supported, please refer to: TOLNet Lidars and Corresponding Field Campaigns

Project DOI: 10.5067/LIDAR/OZONE/TOLNET
Disciplines:   Tropospheric Composition
Collection Disciplines Spatial Temporal
TOLNet_CCNY_Data_1
TOLNet City College of New York Data
Tropospheric Composition Spatial Coverage:
(S: 40.81, N: 40.83), (W: -73.95, E: -73.94)
Temporal Coverage:
2023-06-01 - Present
TOLNet_CSL_Data_1
TOLNet NOAA Chemical Sciences Laboratory Data
Tropospheric Composition Spatial Coverage:
(S: 34.3, N: 42.26), (W: -119.5, E: -72.72)
Temporal Coverage:
2015-03-04 - Present
TOLNet_ECCC_Data_1
TOLNet Environment and Climate Change Canada Data
Tropospheric Composition Spatial Coverage:
(S: 57.1, N: 57.2), (W: -111.7, E: -111.6)
Temporal Coverage:
2016-11-04 - Present
TOLNet_GSFC_Data_1
TOLNet NASA Goddard Space Flight Center Data
Radiation Budget,  Tropospheric Composition Spatial Coverage:
(S: 29.65, N: 52), (W: -180, E: 180)
Temporal Coverage:
2013-09-19 - Present
TOLNet_JPL_Data_1
TOLNet NASA Jet Propulsion Laboratory Data
Tropospheric Composition Spatial Coverage:
(S: 34.18, N: 51.98), (W: -118.2, E: 4.93)
Temporal Coverage:
2000-01-04 - Present
TOLNet_LaRC_Data_1
TOLNet NASA Langley Research Center Data
Tropospheric Composition Spatial Coverage:
(S: 18.7, N: 42), (W: -118, E: -73)
Temporal Coverage:
2013-09-17 - Present
TOLNet_UAH_Data_1
TOLNet University of Alabama in Huntsville Data
Tropospheric Composition Spatial Coverage:
(S: 30.25, N: 42.5), (W: -88.15, E: -86.6)
Temporal Coverage:
2009-06-29 - Present

TOLNet Mission Publications

Kuang, Shi; Newchurch, Michael J.; McKinney, Todd; Perlaky, Nicolas; Tucker, Paula; Stevenson, Darby; Alexander, Susan; Pour‐Biazar, Arastoo; Knupp, Kevin; Johnson, Matthew S.; Sullivan, John T. (2024). Mobile Observations of Ozone and Aerosols in Alabama: Southeastern US Summer Pollution and Coastal Variability.


Cheng, Peiyang; Pour-Biazar, Arastoo; Wu, Yuling; Kuang, Shi; McNider, Richard T.; Koshak, William J. (2024). Utility of Geostationary Lightning Mapper-derived lightning NO emission estimates in air quality modeling studies.


Knowland K E, Keller C A, Wales P A, Wargan K, Coy L, Johnson M S, Liu J, Lucchesi R A, Eastham S D, Fleming E, Liang Q, Leblanc T, Livesey N J, Walker K A, Ott L E, and Pawson S (2022). NASA GEOS Composition Forecast Modeling System GEOS-CF v1.0: Stratospheric Composition. Journal of Advances in Modeling Earth Systems, 14 (6), https://doi.org/10.1029/2021MS002852


Chouza, Fernando; Leblanc, Thierry; Brewer, Mark; Wang, Patrick; Piazzolla, Sabino; Pfister, Gabriele; Kumar, Rajesh; Drews, Carl; Tilmes, Simone; Emmons, Louisa; Johnson, Matthew (2021). The impact of Los Angeles Basin pollution and stratospheric intrusions on the surrounding San Gabriel Mountains as seen by surface measurements, lidar, and numerical models.


Huang, Guanyu; Newchurch, M.J.; Kuang, Shi; Ouwersloot, Huug (2020). A Case Study of Ozone Diurnal Variation in the Convective Boundary Layer in the Southeastern United States Using Multiple Observations and Large-Eddy Simulation. Climate, 7 (4), 53. https://doi.org/10.3390/cli7040053


Langford, Andrew O.; Alvarez II, Raul J.; Kirgis, Guillaume; Senff, Christoph J.; Caputi, Dani; Conley, Stephen A.; Faloona, Ian C.; Iraci, Laura T.; Marrero, Josette E.; McNamara, Mimi E.; Ryoo, Ju-Mee; Yates, Emma L. (2020). Intercomparison of lidar, aircraft, and surface ozone measurements in the San Joaquin Valley during the California Baseline Ozone Transport Study (CABOTS). Atmospheric Measurement Techniques, 12 (3), 1889. https://doi.org/10.5194/amt-12-1889-2019


Leblanc, Thierry; Brewer, Mark A.; Wang, Patrick S.; Granados-Munoz, Maria Jose; Strawbridge, Kevin B.; Travis, Michael; Firanski, Bernard; Sullivan, John T.; McGee, Thomas J.; Sumnicht, Grant K.; Twigg, Laurence W.; Berkoff, Timothy A.; Carrion, William; Gronoff, Guillaume; Aknan, Ali; Chen, Gao; Alvarez, Raul J.; Langford, Andrew O.; Senff, Christoph J.; Kirgis, Guillaume; Johnson, Matthew S.; Kuang, Shi; Newchurch, Michael J. (2020). Validation of the TOLNet Lidars: The Southern California Ozone Observation Project (SCOOP). Atmospheric Measurement Techniques Discussions, 1. https://doi.org/10.5194/amt-2018-240


Gronoff, Guillaume; Robinson, Joseph; Berkoff, Timothy; Swap, Robert; Farris, Betsy; Schroeder, Jeremy; Halliday, Hannah S.; Knepp, Travis; Spinei, Elena; Carrion, William; Adcock, Edward E.; Johns, Zachary; Allen, Danette; Pippin, Margaret (2020). A method for quantifying near range point source induced O3 titration events using Co-located Lidar and Pandora measurements. Atmospheric Environment, 204 43. https://doi.org/10.1016/j.atmosenv.2019.01.052


Newchurch, Michael J.; Alvarez, Raul J.; Berkoff, Timothy A.; Carrion, William; DeYoung, Russell J.; Ganoe, Rene; Gronoff, Guillaume; Kirgis, Guillaume; Kuang, Shi; Langford, Andy O.; Leblanc, Thierry; McGee, Thomas J.; Pliutau, Denis; Senff, Christoph; Sullivan, John T.; Sumnicht, Grant; Twigg, Laurence W.; Wang, Lihua (2020). TOLNet ozone lidar intercomparison during the discover-aq and frappé campaigns. EPJ Web of Conferences, 176 https://doi.org/10.1051/epjconf/201817610007


Johnson, Matthew S.; Liu, Xiong; Zoogman, Peter; Sullivan, John; Newchurch, Michael J.; Kuang, Shi; Leblanc, Thierry; McGee, Thomas (2020). Evaluation of potential sources of a priori ozone profiles for TEMPO tropospheric ozone retrievals. Atmospheric Measurement Techniques, 11 (6), 3457. https://doi.org/10.5194/amt-11-3457-2018


Strawbridge, Kevin B.; Travis, Michael S.; Firanski, Bernard J.; Brook, Jeffrey R.; Staebler, Ralf; Leblanc, Thierry (2020). A fully autonomous ozone, aerosol and night time water vapor LIDAR: a synergistic approach to profiling the atmosphere in the Canadian oil sands region. Atmospheric Measurement Techniques: Discussions, 1. https://doi.org/10.5194/amt-2018-108


Farris, Betsy M.; Gronoff, Guillaume P.; Carrion, William; Knepp, Travis; Pippin, Margaret; Berkoff, Timothy A. (2020). Demonstration of an off-axis parabolic receiver for near-range retrieval of lidar ozone profiles. Atmospheric Measurement Techniques, 12 (1), 363. https://doi.org/10.5194/amt-12-363-2019


Zoogman, P.; Liu, X.; Suleiman, R.M.; Pennington, W.F.; Flittner, D.E.; Al-Saadi, J.A.; Hilton, B.B.; Nicks, D.K.; Newchurch, M.J.; Carr, J.L.; Janz, S.J.; Andraschko, M.R.; Arola, A.; Baker, B.D.; Canova, B.P.; Chan Miller, C.; Cohen, R.C.; Davis, J.E.; Dussault, M.E.; Edwards, D.P.; Fishman, J.; Ghulam, A.; González Abad, G.; Grutter, M.; Herman, J.R.; Houck, J.; Jacob, D.J.; Joiner, J.; Kerridge, B.J.; Kim, J.; Krotkov, N.A.; Lamsal, L.; Li, C.; Lindfors, A.; Martin, R.V.; McElroy, C.T.; McLinden, C.; Natraj, V.; Neil, D.O.; Nowlan, C.R.; O׳Sullivan, E.J.; Palmer, P.I.; Pierce, R.B.; Pippin, M.R.; Saiz-Lopez, A.; Spurr, R.J.D.; Szykman, J.J.; Torres, O.; Veefkind, J.P.; Veihelmann, B.; Wang, H.; Wang, J.; Chance, K. (2019). Tropospheric emissions: Monitoring of pollution (TEMPO). Journal of Quantitative Spectroscopy and Radiative Transfer, 186 17. https://doi.org/10.1016/j.jqsrt.2016.05.008


Langford, A.O.; Alvarez, R.J.; Brioude, J.; Evan, S.; Iraci, L.T.; Kirgis, G.; Kuang, S.; Leblanc, T.; Newchurch, M.J.; Pierce, R.B.; Senff, C.J.; Yates, E.L. (2019). Coordinated profiling of stratospheric intrusions and transported pollution by the Tropospheric Ozone Lidar Network (TOLNet) and NASA Alpha Jet experiment (AJAX): Observations and comparison to HYSPLIT, RAQMS, and FLEXPART. Atmospheric Environment, 174 1. https://doi.org/10.1016/j.atmosenv.2017.11.031


Wang, Lihua; Newchurch, Michael J.; Alvarez II, Raul J.; Berkoff, Timothy A.; Brown, Steven S.; Carrion, William; De Young, Russell J.; Johnson, Bryan J.; Ganoe, Rene; Gronoff, Guillaume; Kirgis, Guillaume; Kuang, Shi; Langford, Andrew O.; Leblanc, Thierry; McDuffie, Erin E.; McGee, Thomas J.; Pliutau, Denis; Senff, Christoph J.; Sullivan, John T.; Sumnicht, Grant; Twigg, Laurence W.; Weinheimer, Andrew J. (2019). Quantifying TOLNet ozone lidar accuracy during the 2014 DISCOVER-AQ and FRAPPÉ campaigns. Atmospheric Measurement Techniques, 10 (10), 3865. https://doi.org/10.5194/amt-10-3865-2017


Kuang, Shi; Newchurch, Michael J.; Thompson, Anne M.; Stauffer, Ryan M.; Johnson, Bryan J.; Wang, Lihua (2019). Ozone Variability and Anomalies Observed During SENEX and SEAC4RS Campaigns in 2013. Journal of Geophysical Research: Atmospheres, 122 (20), 11227. https://doi.org/10.1002/2017jd027139


Granados‐Muñoz, Maria Jose; Johnson, Matthew S.; Leblanc, Thierry (2019). Influence of the North American monsoon on Southern California tropospheric ozone levels during summer in 2013 and 2014. Geophysical Research Letters, 44 (12), 6431. https://doi.org/10.1002/2017gl073375


Sullivan, John T.; Rabenhorst, Scott D.; Dreessen, Joel; McGee, Thomas J.; Delgado, Ruben; Twigg, Laurence; Sumnicht, Grant (2019). Lidar observations revealing transport of O3 in the presence of a nocturnal low-level jet: Regional implications for “next-day” pollution. Atmospheric Environment, 158 160. https://doi.org/10.1016/j.atmosenv.2017.03.039


Travis, Katherine R.; Jacob, Daniel J.; Keller, Christoph A.; Kuang, Shi; Lin, Jintai; Newchurch, Michael J.; Thompson, Anne M. (2019). Resolving ozone vertical gradients in air quality models. Atmospheric Chemistry and Physics, https://doi.org/10.5194/acp-2017-596


Huang, Guanyu; Liu, Xiong; Chance, Kelly; Yang, Kai; Bhartia, Pawan K.; Cai, Zhaonan; Allaart, Marc; Calpini, Bertrand; Coetzee, Gerrie J. R.; Cuevas-Agulló, Emilio; Cupeiro, Manuel; De Backer, Hugo; Dubey, Manvendra K.; Fuelberg, Henry E.; Fujiwara, Masatomo; Godin-Beekmann, Sophie; Hall, Tristan J.; Johnson, Bryan; Joseph, Everette; Kivi, Rigel; Kois, Bogumil; Komala, Ninong; König-Langlo, Gert; Laneve, Giovanni; Leblanc, Thierry; Marchand, Marion; Minschwaner, Kenneth R.; Morris, Gary; Newchurch, Mike J.; Ogino, Shin-Ya; Ohkawara, Nozomu; Piters, Ankie J. M.; Posny, Françoise; Querel, Richard; Scheele, Rinus; Schmidlin, Frank J.; Schnell, Russell C.; Schrems, Otto; Selkirk, Henry; Shiotani, Masato; Skrivánková, Pavla; Stübi, René; Taha, Ghassan; Tarasick, David W.; Thompson, Anne M.; Thouret, Valérie; Tully, Matt; van Malderen, Roeland; Vaughan, Geraint; Vömel, Holger; von der Gathen, Peter; Witte, Jacquelyn C.; Yela, Margarita (2019). Validation of 10-year SAO OMI Ozone Profile (PROFOZ) Product Using Ozonesonde Observations. Atmospheric Measurement Techniques Discussions, 1. https://doi.org/10.5194/amt-2017-15


Johnson, Matthew; Kuang, Shi; Wang, Lihua; Newchurch, M. (2019). Evaluating Summer-Time Ozone Enhancement Events in the Southeast United States. Atmosphere, 7 (8), 108. https://doi.org/10.3390/atmos7080108


Langford, A.O.; Senff, C.J.; Alvarez, R.J.; Brioude, J.; Cooper, O.R.; Holloway, J.S.; Lin, M.Y.; Marchbanks, R.D.; Pierce, R.B.; Sandberg, S.P.; Weickmann, A.M.; Williams, E.J. (2018). An overview of the 2013 Las Vegas Ozone Study (LVOS): Impact of stratospheric intrusions and long-range transport on surface air quality. Atmospheric Environment, 109 305. https://doi.org/10.1016/j.atmosenv.2014.08.040


Langford, A. O.; Alvarez, R. J.; Brioude, J.; Fine, R.; Gustin, M. S; Lin, M. Y.; Marchbanks, R. D.; Pierce, R. B.; Sandberg, S. P.; Senff, C. J.; Weickmann, A. M.; Williams, E. J. (2018). Entrainment of stratospheric air and Asian pollution by the convective boundary layer in the southwestern U.S.. Journal of Geophysical Research: Atmospheres, 122 (2), 1312. https://doi.org/10.1002/2016jd025987


Edwards, Peter M.; Brown, Steven S.; Roberts, James M.; Ahmadov, Ravan; Banta, Robert M.; deGouw, Joost A.; Dubé, William P.; Field, Robert A.; Flynn, James H.; Gilman, Jessica B.; Graus, Martin; Helmig, Detlev; Koss, Abigail; Langford, Andrew O.; Lefer, Barry L.; Lerner, Brian M.; Li, Rui; Li, Shao-Meng; McKeen, Stuart A.; Murphy, Shane M.; Parrish, David D.; Senff, Christoph J.; Soltis, Jeffrey; Stutz, Jochen; Sweeney, Colm; Thompson, Chelsea R.; Trainer, Michael K.; Tsai, Catalina; Veres, Patrick R.; Washenfelder, Rebecca A.; Warneke, Carsten; Wild, Robert J.; Young, Cora J.; Yuan, Bin; Zamora, Robert (2017). High winter ozone pollution from carbonyl photolysis in an oil and gas basin. Nature, 351. https://doi.org/10.1038/nature13767


Pfister G G, Reddy P J, Barth M C, Flocke F F, Fried A, Herndon S C, Sive B C, Sullivan J T, Thompson A M, Yacovitch T I, Weinheimer A J, and Wisthaler A (2017). Using Observations and Source-Specific Model Tracers to Characterize Pollutant Transport During FRAPPÉ and DISCOVER-AQ. Journal of Geophysical Research: Atmospheres, 122 (19), 10510. https://doi.org/10.1002/2017JD027257


Kuang, Shi; Newchurch, Michael J.; Burris, John; Liu, Xiong (2017). Ground-based lidar for atmospheric boundary layer ozone measurements. Applied Optics, 52 (15), 3557. https://doi.org/10.1364/AO.52.003557


Yates E L, Johnson M S, Iraci L T, Ryoo J-M, Pierce R B, Cullis P D, Gore W, Ives M A, Johnson B J, Leblanc T, Marrero J E, Sterling C W, and Tanaka T (2017). An Assessment of Ground Level and Free Tropospheric Ozone Over California and Nevada. Journal of Geophysical Research: Atmospheres, 122 (18), 10089. https://doi.org/10.1002/2016jd026266


Wang, Lihua; Follette-Cook, Melanie B.; Newchurch, M.J.; Pickering, Kenneth E.; Pour-Biazar, Arastoo; Kuang, Shi; Koshak, William; Peterson, Harold (2017). Evaluation of lightning-induced tropospheric ozone enhancements observed by ozone lidar and simulated by WRF/Chem. Atmospheric Environment, 115 185. https://doi.org/10.1016/j.atmosenv.2015.05.054


Sullivan, J. T.; McGee, T. J.; Leblanc, T.; Sumnicht, G. K.; Twigg, L. W. (2017). Optimization of the GSFC TROPOZ DIAL retrieval using synthetic lidar returns and ozonesondes – Part 1: Algorithm validation. Atmospheric Measurement Techniques, 8 (10), 4133. https://doi.org/10.5194/amt-8-4133-2015


Kumar, Rajesh; Bhardwaj, Piyush; Pfister, Gabriele; Drews, Carl; Honomichl, Shawn; D’Attilo, Garth (2017). Description and Evaluation of the Fine Particulate Matter Forecasts in the NCAR Regional Air Quality Forecasting System. Atmosphere, 12 (3), 302. https://doi.org/10.3390/atmos12030302


Sullivan, John T.; McGee, Thomas J.; DeYoung, Russell; Twigg, Laurence W.; Sumnicht, Grant K.; Pliutau, Denis; Knepp, Travis; Carrion, William (2017). Results from the NASA GSFC and LaRC Ozone Lidar Intercomparison: New Mobile Tools for Atmospheric Research. Journal of Atmospheric and Oceanic Technology, 32 (10), 1779. https://doi.org/10.1175/JTECH-D-14-00193.1


Reid J S, Kuehn R E, Holz R E, Eloranta E W, Kaku K C, Kuang S, Newchurch M J, Thompson A M, Trepte C R, Zhang J, Atwood S A, Hand J L, Holben B N, Minnis P, and Posselt D J (2017). Ground-based High Spectral Resolution Lidar observation of aerosol vertical distribution in the summertime Southeast United States. Journal of Geophysical Research: Atmospheres, 122 (5), 2970. https://doi.org/10.1002/2016jd025798


Sullivan, J. T.; McGee, T. J.; Sumnicht, G. K.; Twigg, L. W.; Hoff, R. M. (2017). A mobile differential absorption lidar to measure sub-hourly fluctuation of tropospheric ozone profiles in the Baltimore–Washington, D.C. region. Atmospheric Measurement Techniques, 7 (10), 3529. https://doi.org/10.5194/amt-7-3529-2014


Kuang S, Newchurch M J, Johnson M S, Wang L, Burris J, Pierce R B, Wloranta E W, Pollack I B, Graus M, de Gouw J, Warneke C, Ryerson T B, Markovic M Z, Holloway J S, Pour-Biazar A, Huang G, Liu X, and Feng N (2017). Summertime tropospheric ozone enhancement associated with a cold front passage due to stratosphere-to-troposphere transport and biomass burning: Simultaneous ground-based lidar and airborne measurements. Journal of Geophysical Research: Atmospheres, 122 (2), 1293. https://doi.org/10.1002/2016JD026078


Lebnalc T, Sica R J, van Gijsel J A E, Godin-Beekman S, Haefele A, Trickl T, Payen G, and Gabarrot F (2016). Proposed standardized definitions for vertical resolution and uncertainty in the NDACC lidar ozone and temperature algorithms – Part 1: Vertical resolution. Atmospheric Measurement Techniques, 9 (8), 4029. https://doi.org/10.5194/amt-9-4029-2016


Leblanc T, Sica R J, van Gijsel J A E, Godin-Beekman S, Haefele A, Trickl T, Payen G, and Liberti G (2016). Proposed standardized definitions for vertical resolution and uncertainty in the NDACC lidar ozone and temperature algorithms – Part 2: Ozone DIAL uncertainty budget. Atmospheric Measurement Techniques, 9 (8), 4051. https://doi.org/10.5194/amt-9-4051-2016


Sullivan J T, McGee T J, Langford A O, Alvarez II R J, Senff C J, Reddy P J, Thompson A M, Twigg L W, Sumnicht G K, Lee P, Weinheimer A, Knote C, Long R W, and Hoff R M (2016). Quantifying the contribution of thermally driven recirculation to a high-ozone event along the Colorado Front Range using lidar. Journal of Geophysical Research: Atmospheres, 121 (17), 10377. https://doi.org/10.1002/2016JD025229


Granados-Muñoz M J and Leblanc T (2016). Tropospheric ozone seasonal and long-term variability as seen by lidar and surface measurements at the JPL-Table Mountain Facility, California. Atmospheric Chemistry and Physics, 16 (14), 9299. https://doi.org/10.5194/acp-16-9299-2016


McDuffie E E, Edwards P M, Gilman J B, Lerner B M, Dubé W P, Trainer M, Wolfe D E, Angevine W M, deGouw J, Williams E J, Tevlin A G, Murphy J G, Fischer E V, McKeen S, Ryerson T B, Peischl J, Holloway J S, Aikin K, Langford A O, Senff C J, Alvarez II R J, Hall S R, Ullmann K, Lantz K O, and Brown S S (2016). Influence of oil and gas emissions on summertime ozone in the Colorado Northern Front Range. Journal of Geophysical Research: Atmospheres, 121 (14), 8712. https://doi.org/10.1002/2016JD025265


Sullivan J T, McGee T J, Thompson A M, Pierce R B, Sumnicht G K, Twigg L W, Eloranta E, and Hoff R M (2015). Characterizing the lifetime and occurrence of stratospheric-tropospheric exchange events in the rocky mountain region using high-resolution ozone measurements. Journal of Geophysical Research: Atmospheres, 120 (24), 12410. https://doi.org/10.1002/2015JD023877


Lin M, Horowitz L W, Cooper O R, Tarasick D, Conley S, Iraci L T, Johnson B, Leblanc T, Petropavlovskikh I, and Yates E L (2015). Revisiting the evidence of increasing springtime ozone mixing ratios in the free troposphere over western North America. Geophysical Research Letters, 42 (20), 8719. https://doi.org/10.1002/2015GL065311


Kuang S, Newchurch M J, Burris J, Wang L, Knupp K, and Huang G (2012). Stratosphere-to-troposphere transport revealed by ground-based lidar and ozonesonde at a midlatitude site. Journal of Geophysical Research: Atmospheres, 117 (D18), https://doi.org/10.1029/2012JD017695


Lebnalc T, Walsh T D, McDermid I S, Toon G C, BLavier J F, Haines B, Read W G, Herman B, Fetzer E, Sander S, Pongetti T, Whiteman D N, McGee T D, Twigg L, Sumnicht G, Venable D, Calhour M, Dirisu A, Hurst D, Jordan A, Hall E, Miloshevich L, Vömel H, Straub C, Kampfer N, Nedoluha G E, Gomez R M, Holub K, Gutman S, Bruan J, Vanhove T, Stiller G, and Hauchecorne A (2011). Measurements of Humidity in the Atmosphere and Validation Experiments (MOHAVE)-2009: overview of campaign operations and results. Atmospheric Measurement Techniques, 4 (12), 2579. https://doi.org/10.5194/amt-4-2579-2011


Kuang S, Newchurch M J, Burris J, Wang L, Buckley P I, Johnson S, Knupp K, Huang G, Phillips D, and Cantrell W (2011). Nocturnal ozone enhancement in the lower troposphere observed by lidar. Atmospheric Environment, 45 (33), 6078. https://doi.org/10.1016/j.atmosenv.2011.07.038


Kuang S, Burris J F, Newchurch M J, Johnson S, and Long S (2011). Differential Absorption Lidar to Measure Subhourly Variation of Tropospheric Ozone Profiles. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 49 (1), https://doi.org/10.1109/TGRS.2010.2054834


Parrington M, Jones D B A, Bowman K W, Thompson A M, Taracisk D W, Merrill T J, Oltmans S J, Leblanc T, Witte J C, and Millet D B (2009). Impact of the assimilation of ozone from the Tropospheric Emission Spectrometer on surface ozone across North America. Geophysical Research Letters, 36 (4), https://doi.org/10.1029/2008GL036935


Huang, Guanyu; Newchurch, M.J.; Kuang, Shi; Buckley, Patrick I.; Cantrell, Wesley; Wang, Lihua (2005). Definition and determination of ozone laminae using Continuous Wavelet Transform (CWT) analysis. Atmospheric Environment, 104 125. https://doi.org/10.1016/j.atmosenv.2014.12.027


McDermid I S, Beyerle G, Haner D A, and Leblanc T (2002). Redesign and improved performance of the tropospheric ozone lidar at the Jet Propulsion Laboratory Table Mountain Facility. Applied Optics, 41 (36), 7550. https://doi.org/10.1364/AO.41.007550