Tropospheric Ozone Lidar Network

Disciplines: Tropospheric Composition
Collection | Disciplines | Spatial | Temporal |
---|---|---|---|
TOLNet_CSL_Data_1
TOLNet NOAA Chemical Sciences Laboratory Data |
Tropospheric Composition |
Spatial Coverage: (34.3, 40.1), (-119.5, -105.2) |
Temporal Coverage: 2015-03-04 - Present |
TOLNet_ECCC_Data_1
TOLNet Environment and Climate Change Canada Data |
Tropospheric Composition |
Spatial Coverage: (57.1, 57.2), (-111.7, -111.6) |
Temporal Coverage: 2016-11-04 - Present |
TOLNet_GSFC_Data_1
TOLNet NASA Goddard Space Flight Center Data |
Tropospheric Composition |
Spatial Coverage: (29.65, 52), (-180, 180) |
Temporal Coverage: 2013-09-19 - Present |
TOLNet_JPL_Data_1
TOLNet NASA Jet Propulsion Laboratory Data |
Tropospheric Composition |
Spatial Coverage: (34.3, 34.6), (-117.75, -117.65) |
Temporal Coverage: 2011-01-27 - Present |
TOLNet_LaRC_Data_1
TOLNet NASA Langley Research Center Data |
Tropospheric Composition |
Spatial Coverage: (18.7, 42), (-118, -73) |
Temporal Coverage: 2013-09-17 - Present |
TOLNet_UAH_Data_1
TOLNet University of Alabama in Huntsville Data |
Tropospheric Composition |
Spatial Coverage: (34.724, 34.726), (-86.7, -86.6) |
Temporal Coverage: 2009-06-29 - Present |
TOLNet Citations
Knowland K E, Keller C A, Wales P A, Wargan K, Coy L, Johnson M S, Liu J, Lucchesi R A, Eastham S D, Fleming E, Liang Q, Leblanc T, Livesey N J, Walker K A, Ott L E, and Pawson S (2022). NASA GEOS Composition Forecast Modeling System GEOS-CF v1.0: Stratospheric Composition. Journal of Advances in Modeling Earth Systems, 14 (6), https://doi.org/10.1029/2021MS002852
Kumar R, Bhardwaj P, Pfister G, Drews C, Honomichl S, and D’Attilo G (2021). Description and Evaluation of the Fine Particulate Matter Forecasts in the NCAR Regional Air Quality Forecasting System. Atmosphere, 12 (3), 302. https://doi.org/10.3390/atmos12030302
Gronoff G, Robinson J, Berkoff T, Swap R, Farris B, Schroeder J, Halliday H S, Knepp T, Spinei E, Carrion W, Adcock E E, Johns Z, Allen D, and Pippen M (2019). A method for quantifying near range point source induced O3 titration events using Co-located Lidar and Pandora measurements. Atmospheric Environment, 204 43. https://doi.org/10.1016/j.atmosenv.2019.01.052
Huang G M, Newchurch M, Kuang S, and Ouwersloot H G (2019). A Case Study of Ozone Diurnal Variation in the Convective Boundary Layer in the Southeastern United States Using Multiple Observations and Large-Eddy Simulation. Climate, 7 (4), 53. https://doi.org/10.3390/cli7040053
Langford A O, Alvarez II R J, Kirgis G, Senff C J, Caputi S, Conley S A, Faloona I C, Iraci L T, Marrero J E, McNamara M E, Ryoo J, and Yates E L (2019). Intercomparison of lidar, aircraft, and surface ozone measurements in the San Joaquin Valley during the California Baseline Ozone Transport Study (CABOTS). Atmospheric Measurement Techniques, 12 (3), 1889. https://doi.org/10.5194/amt-12-1889-2019
Farris B M, Gronoff F P, Carrion W, Knepp T, Pippin M, and Berkoff T A (2019). Demonstration of an off-axis parabolic receiver for near-range retrieval of lidar ozone profiles. Atmospheric Measurement Techniques, 12 (1), 363. https://doi.org/10.5194/amt-12-363-2019
Leblanc T, Brewer M A, Wang P S, Granados-Muñoz M J, Strawbridge K B, Travis M, Firanski B, Sullivan J T, McGee T J, Sumnicht G K, Twigg L W, Berkoff T A, Carrion W, Gronoff G, Aknan A, Chen G, Alvarez R J, Langford A O, Senff C J, Kirgis G, Johnson M S, Kuang S, and Newchurch M J (2018). Validation of the TOLNet Lidars: The Southern California Ozone Observation Project (SCOOP). Atmospheric Measurement Techniques Discussions, 1. https://doi.org/10.5194/amt-2018-240
Johnson M S, Liu X, Zoogman P, Sullican J, Newchurch M J, Kuang S, Leblanc T, and McGee T (2018). Evaluation of potential sources of a priori ozone profiles for TEMPO tropospheric ozone retrievals. Atmospheric Measurement Techniques, 11 (6), 3457. https://doi.org/10.5194/amt-11-3457-2018
Strawbridge K B, Travis M S, Firanski B J, Brook J R, Staebler R, and Leblanc T (2018). A fully autonomous ozone, aerosol and night time water vapor LIDAR: a synergistic approach to profiling the atmosphere in the Canadian oil sands region. Atmospheric Measurement Techniques: Discussions, 1. https://doi.org/10.5194/amt-2018-108
Newchurch M J, Alvarez II R J, Berkoff T A, Carrion W, DeYoung R J, Ganoe R, Gronoff G, Kirgis G, Kuang S, Langford A O, Leblanc T, McGee T J, Pliutau D, Senff C, Sullivan J T, Sumnicht G, Twigg L W, and Wang L (2018). TOLNet ozone lidar intercomparison during the discover-aq and frappé campaigns. EPJ Web of Conferences, 176 https://doi.org/10.1051/epjconf/201817610007
Langford A O, Alvarez II R J, Brioude J, Evan S, Iraci L T, Kirgis G, Kuang S, Leblanc T, Newchurch M J, Pierce R B, Senff C J, and Yates E L (2017). Coordinated profiling of stratospheric intrusions and transported pollution by the Tropospheric Ozone Lidar Network (TOLNet) and NASA Alpha Jet experiment (AJAX): Observations and comparison to HYSPLIT, RAQMS, and FLEXPART. Atmospheric Environment, 174 1. https://doi.org/10.1016/j.atmosenv.2017.11.031
Wang L, Newchurch M J, Alvarez II R J, Berkoff T A, Brown S S, Carrion W, De Young R J, Johnson B J, Ganoe R, Gronoff G, Kirgis G, Kuang S, Langford A O, Leblanc T, McDuffie E E, McGee T J, Pliutau D, Senff C J, Sullivan J T, Sumnicht G, Twigg L W, and Weinheimer A J (2017). Quantifying TOLNet ozone lidar accuracy during the 2014 DISCOVER-AQ and FRAPPÉ campaigns. Atmospheric Measurement Techniques, 10 (10), 3865. https://doi.org/10.5194/amt-10-3865-2017
Kuang S, Newchurch M J, Thompson A M, Stauffer R M, Johnson B J, and Wang L (2017). Ozone Variability and Anomalies Observed During SENEX and SEAC4RS Campaigns in 2013. Journal of Geophysical Research: Atmospheres, 122 (20), 11227. https://doi.org/10.1002/2017jd027139
Pfister G G, Reddy P J, Barth M C, Flocke F F, Fried A, Herndon S C, Sive B C, Sullivan J T, Thompson A M, Yacovitch T I, Weinheimer A J, and Wisthaler A (2017). Using Observations and Source-Specific Model Tracers to Characterize Pollutant Transport During FRAPPÉ and DISCOVER-AQ. Journal of Geophysical Research: Atmospheres, 122 (19), 10510. https://doi.org/10.1002/2017JD027257
Yates E L, Johnson M S, Iraci L T, Ryoo J-M, Pierce R B, Cullis P D, Gore W, Ives M A, Johnson B J, Leblanc T, Marrero J E, Sterling C W, and Tanaka T (2017). An Assessment of Ground Level and Free Tropospheric Ozone Over California and Nevada. Journal of Geophysical Research: Atmospheres, 122 (18), 10089. https://doi.org/10.1002/2016jd026266
Travis K R, Jacob D J, Keller C A, Kuang S, Lin J, Newchurch M J, and Thompson A M (2017). Resolving ozone vertical gradients in air quality models. Atmospheric Chemistry and Physics, https://doi.org/10.5194/acp-2017-596
Granados-Muñoz M J, Johnson M S, Leblanc T (2017). Influence of the North American monsoon on Southern California tropospheric ozone levels during summer in 2013 and 2014. Geophysical Research Letters, 44 (12), 6431. https://doi.org/10.1002/2017gl073375
Sullivan J T, Rabenhorst S C, Dreessen J, McGee T J, Delgado R, Twigg L, and Sumnicht G (2017). Lidar observations revealing transport of O3 in the presence of a nocturnal low-level jet: Regional implications for “next-day” pollution. Atmospheric Environment, 158 160. https://doi.org/10.1016/j.atmosenv.2017.03.039
Huang G, Liu X, Chance K, et al. (2017). Validation of 10-year SAO OMI Ozone Profile (PROFOZ) Product Using Ozonesonde Observations. Atmospheric Measurement Techniques Discussions, 1. https://doi.org/10.5194/amt-2017-15
Reid J S, Kuehn R E, Holz R E, Eloranta E W, Kaku K C, Kuang S, Newchurch M J, Thompson A M, Trepte C R, Zhang J, Atwood S A, Hand J L, Holben B N, Minnis P, and Posselt D J (2017). Ground-based High Spectral Resolution Lidar observation of aerosol vertical distribution in the summertime Southeast United States. Journal of Geophysical Research: Atmospheres, 122 (5), 2970. https://doi.org/10.1002/2016jd025798
Kuang S, Newchurch M J, Johnson M S, Wang L, Burris J, Pierce R B, Wloranta E W, Pollack I B, Graus M, de Gouw J, Warneke C, Ryerson T B, Markovic M Z, Holloway J S, Pour-Biazar A, Huang G, Liu X, and Feng N (2017). Summertime tropospheric ozone enhancement associated with a cold front passage due to stratosphere-to-troposphere transport and biomass burning: Simultaneous ground-based lidar and airborne measurements. Journal of Geophysical Research: Atmospheres, 122 (2), 1293. https://doi.org/10.1002/2016JD026078
Zoogman P, Liu X, Suleiman R M, Pennington W F, Flittner D E, Al-Saadi J A, Hilton B B, Nicks D K, Newchurch M J, Carr J L, Janz S J, Andraschko M R, Arola A, Baker B D, Canova B P, Miller C C, Cohen R C, Davis J E, Dussault M E, Edwards D P, Fishman J, Ghulam A, González Abad G, Grutter M, Herman J R, Houck J, Jacob D J, Joiner J, Kerridge B J, Kim J, Krotkov N A, Lamsal L, Li C, Lindfors A, Martin R V, McEltor C T, McLinden C, Natraj V, Neil D O, Nowlan C R, O’Sullivan E J, Palmer P I, Pierce R B, Pippin (2017). Tropospheric emissions: Monitoring of pollution (TEMPO). Journal of Quantitative Spectroscopy and Radiative Transfer, 186 17. https://doi.org/10.1016/j.jqsrt.2016.05.008
Langord A O, Alvarez II R J, Brioude J, Fine R, Gustin M S, Lin M Y, Marchbanks R D, Pierce R B, Sandberg S P, Senff C J, Weickmann A M, and Williams E J (2016). Entrainment of stratospheric air and Asian pollution by the convective boundary layer in the southwestern U.S.. Journal of Geophysical Research: Atmospheres, 122 (2), 1312. https://doi.org/10.1002/2016jd025987
Leblanc T, Sica R J, van Gijsel J A E, Godin-Beekman S, Haefele A, Trickl T, Payen G, and Liberti G (2016). Proposed standardized definitions for vertical resolution and uncertainty in the NDACC lidar ozone and temperature algorithms – Part 2: Ozone DIAL uncertainty budget. Atmospheric Measurement Techniques, 9 (8), 4051. https://doi.org/10.5194/amt-9-4051-2016
Lebnalc T, Sica R J, van Gijsel J A E, Godin-Beekman S, Haefele A, Trickl T, Payen G, and Gabarrot F (2016). Proposed standardized definitions for vertical resolution and uncertainty in the NDACC lidar ozone and temperature algorithms – Part 1: Vertical resolution. Atmospheric Measurement Techniques, 9 (8), 4029. https://doi.org/10.5194/amt-9-4029-2016
Sullivan J T, McGee T J, Langford A O, Alvarez II R J, Senff C J, Reddy P J, Thompson A M, Twigg L W, Sumnicht G K, Lee P, Weinheimer A, Knote C, Long R W, and Hoff R M (2016). Quantifying the contribution of thermally driven recirculation to a high-ozone event along the Colorado Front Range using lidar. Journal of Geophysical Research: Atmospheres, 121 (17), 10377. https://doi.org/10.1002/2016JD025229
Johnson M S, Kuang S, Wang L, Newchurch M J (2016). Evaluating Summer-Time Ozone Enhancement Events in the Southeast United States. Atmosphere, 7 (8), 108. https://doi.org/10.3390/atmos7080108
Granados-Muñoz M J and Leblanc T (2016). Tropospheric ozone seasonal and long-term variability as seen by lidar and surface measurements at the JPL-Table Mountain Facility, California. Atmospheric Chemistry and Physics, 16 (14), 9299. https://doi.org/10.5194/acp-16-9299-2016
McDuffie E E, Edwards P M, Gilman J B, Lerner B M, Dubé W P, Trainer M, Wolfe D E, Angevine W M, deGouw J, Williams E J, Tevlin A G, Murphy J G, Fischer E V, McKeen S, Ryerson T B, Peischl J, Holloway J S, Aikin K, Langford A O, Senff C J, Alvarez II R J, Hall S R, Ullmann K, Lantz K O, and Brown S S (2016). Influence of oil and gas emissions on summertime ozone in the Colorado Northern Front Range. Journal of Geophysical Research: Atmospheres, 121 (14), 8712. https://doi.org/10.1002/2016JD025265
Sullivan J T, McGee T J, Thompson A M, Pierce R B, Sumnicht G K, Twigg L W, Eloranta E, and Hoff R M (2015). Characterizing the lifetime and occurrence of stratospheric-tropospheric exchange events in the rocky mountain region using high-resolution ozone measurements. Journal of Geophysical Research: Atmospheres, 120 (24), 12410. https://doi.org/10.1002/2015JD023877
Sullivan J T, McGee T J, Leblanc T, Sumnicht G K, and Twigg L W (2015). Optimization of the GSFC TROPOZ DIAL retrieval using synthetic lidar returns and ozonesondes – Part 1: Algorithm validation. Atmospheric Measurement Techniques, 8 (10), 4133. https://doi.org/10.5194/amt-8-4133-2015
Lin M, Horowitz L W, Cooper O R, Tarasick D, Conley S, Iraci L T, Johnson B, Leblanc T, Petropavlovskikh I, and Yates E L (2015). Revisiting the evidence of increasing springtime ozone mixing ratios in the free troposphere over western North America. Geophysical Research Letters, 42 (20), 8719. https://doi.org/10.1002/2015GL065311
Sullivan J T, McGee T J, DeYoung R, Twigg L W, Sumnicht S K, Pliutau D, Knepp T, and Carrion W (2015). Results from the NASA GSFC and LaRC Ozone Lidar Intercomparison: New Mobile Tools for Atmospheric Research. Journal of Atmospheric and Oceanic Technology, 32 (10), 1779. https://doi.org/10.1175/JTECH-D-14-00193.1
Wang L, Follette-Cook M B, Newchurch M J, Pickering K E, Pour-Biazar A, Kuang S, Koshak W, and Peterson H (2015). Evaluation of lightning-induced tropospheric ozone enhancements observed by ozone lidar and simulated by WRF/Chem. Atmospheric Environment, 115 185. https://doi.org/10.1016/j.atmosenv.2015.05.054
Langford A O, Sanff C J, Alvarez R J, Brioude J, Cooper O R, Holloway J S, Lin M Y, Marchbanks R D, Pierce R B, Sandberg S P, Weickmann A M, and Williams E J (2015). An overview of the 2013 Las Vegas Ozone Study (LVOS): Impact of stratospheric intrusions and long-range transport on surface air quality. Atmospheric Environment, 109 305. https://doi.org/10.1016/j.atmosenv.2014.08.040
Huang G, Newchurch M J, Kuang S, Buckley P I, Cantrell W, Wang L (2014). Definition and determination of ozone laminae using Continuous Wavelet Transform (CWT) analysis. Atmospheric Environment, 104 125. https://doi.org/10.1016/j.atmosenv.2014.12.027
Sullivan J T, McGee T J, Sumnicht G K, Twigg L W, and Hoff R M (2014). A mobile differential absorption lidar to measure sub-hourly fluctuation of tropospheric ozone profiles in the Baltimore–Washington, D.C. region. Atmospheric Measurement Techniques, 7 (10), 3529. https://doi.org/10.5194/amt-7-3529-2014
Edwards P M, Brown S S, Roberts J M, Ahmadov R, Banta R M, deGouw J A, Dubé W P, Field R A, Flynn J H, Gilman J B, Graus M, Helmig D, Koss A, Langford A O, Lefer B L, Lerner B M, Li R, Li S, McKeen S A, Murphy S M, Parrish D D, Senff C J, Soltis J, Stutz J, Sweeney C, Thompson C R, Trainer M K, Tsai C, Veres P R, Washenfelder R A, Warneke C, Wild R J, Young C J, Yuan B, and Zamora R (2014). High winter ozone pollution from carbonyl photolysis in an oil and gas basin. Nature, 351. https://doi.org/10.1038/nature13767
Kuang S, Newchurch M J, Burris J, and Liu X (2013). Ground-based lidar for atmospheric boundary layer ozone measurements. Applied Optics, 52 (15), 3557. https://doi.org/10.1364/AO.52.003557
Kuang S, Newchurch M J, Burris J, Wang L, Knupp K, and Huang G (2012). Stratosphere-to-troposphere transport revealed by ground-based lidar and ozonesonde at a midlatitude site. Journal of Geophysical Research: Atmospheres, 117 (D18), https://doi.org/10.1029/2012JD017695
Lebnalc T, Walsh T D, McDermid I S, Toon G C, BLavier J F, Haines B, Read W G, Herman B, Fetzer E, Sander S, Pongetti T, Whiteman D N, McGee T D, Twigg L, Sumnicht G, Venable D, Calhour M, Dirisu A, Hurst D, Jordan A, Hall E, Miloshevich L, Vömel H, Straub C, Kampfer N, Nedoluha G E, Gomez R M, Holub K, Gutman S, Bruan J, Vanhove T, Stiller G, and Hauchecorne A (2011). Measurements of Humidity in the Atmosphere and Validation Experiments (MOHAVE)-2009: overview of campaign operations and results. Atmospheric Measurement Techniques, 4 (12), 2579. https://doi.org/10.5194/amt-4-2579-2011
Kuang S, Newchurch M J, Burris J, Wang L, Buckley P I, Johnson S, Knupp K, Huang G, Phillips D, and Cantrell W (2011). Nocturnal ozone enhancement in the lower troposphere observed by lidar. Atmospheric Environment, 45 (33), 6078. https://doi.org/10.1016/j.atmosenv.2011.07.038
Kuang S, Burris J F, Newchurch M J, Johnson S, and Long S (2011). Differential Absorption Lidar to Measure Subhourly Variation of Tropospheric Ozone Profiles. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 49 (1), https://doi.org/10.1109/TGRS.2010.2054834
Parrington M, Jones D B A, Bowman K W, Thompson A M, Taracisk D W, Merrill T J, Oltmans S J, Leblanc T, Witte J C, and Millet D B (2009). Impact of the assimilation of ozone from the Tropospheric Emission Spectrometer on surface ozone across North America. Geophysical Research Letters, 36 (4), https://doi.org/10.1029/2008GL036935
McDermid I S, Beyerle G, Haner D A, and Leblanc T (2002). Redesign and improved performance of the tropospheric ozone lidar at the Jet Propulsion Laboratory Table Mountain Facility. Applied Optics, 41 (36), 7550. https://doi.org/10.1364/AO.41.007550