ACEPOL Level 2
Entry Title: ACEPOL ER-2 Meteorological and Navigational Data Version 1

Entry ID: ACEPOL_MetNav_AircraftInSitu_Data_1
Field Campaigns
Description

ACEPOL_MetNav_AircraftInSitu_Data are in situ meteorological and navigational measurements collected onboard the ER-2 during the Aerosol Characterization from Polarimeter and Lidar (ACEPOL) campaign. In order to improve our understanding of the effect of aerosols on climate and air quality, measurements of aerosol chemical composition, size distribution, height profile, and optical properties are of crucial importance. In terms of remotely sensed instrumentation, the most extensive set of aerosol properties can be obtained by combining passive multi-angle, multi-spectral measurements of intensity and polarization with active measurements performed by a High Spectral Resolution Lidar. During Fall 2017, the Aerosol Characterization from Polarimeter and Lidar (ACEPOL) campaign, jointly sponsored by NASA and the Netherlands Institute for Space Research (SRON), performed aerosol and cloud measurements over the United States from the NASA high altitude ER-2 aircraft. Six instruments were deployed on the aircraft. Four of these instruments were multi-angle polarimeters: the Airborne Hyper Angular Rainbow Polarimeter (AirHARP), the Airborne Multiangle SpectroPolarimetric Imager (AirMSPI), the Airborne Spectrometer for Planetary Exploration (SPEX Airborne) and the Research Scanning Polarimeter (RSP). The other two instruments were lidars: the High Spectral Resolution Lidar 2 (HSRL-2) and the Cloud Physics Lidar (CPL). The ACEPOL operation was based at NASA’s Armstrong Flight Research Center in Palmdale California, which enabled observations of a wide variety of scene types, including urban, desert, forest, coastal ocean and agricultural areas, with clear, cloudy, polluted and pristine atmospheric conditions. The primary goal of ACEPOL was to assess the capabilities of the different polarimeters for retrieval of aerosol and cloud microphysical and optical parameters, as well as their capabilities to derive aerosol layer height (near-UV polarimetry, O2 A-band). ACEPOL also focused on the development and evaluation of aerosol retrieval algorithms that combine data from both active (lidar) and passive (polarimeter) instruments. ACEPOL data are appropriate for algorithm development and testing, instrument intercomparison, and investigations of active and passive instrument data fusion, which make them valuable resources for remote sensing communities as they prepare for the next generation of spaceborne MAP and lidar missions.

DOI

10.5067/SUBORBITAL/ACEPOL2017/MetNav_AircraftInSitu_Data_1

Citation Styles for this Dataset
Keywords

From GCMD Science Keywords:
  • RELATIVE HUMIDITY > HUMIDITY > WATER VAPOR INDICATORS
  • ALTITUDE
  • DEW POINT TEMPERATURE > WATER VAPOR INDICATORS
  • SURFACE TEMPERATURE
  • WIND SPEED > SURFACE WINDS
  • ATMOSPHERIC TEMPERATURE
  • AIR TEMPERATURE > SURFACE TEMPERATURE
  • ATMOSPHERIC WATER VAPOR
  • WIND DIRECTION > SURFACE WINDS
  • U/V WIND COMPONENTS > SURFACE WINDS
  • SURFACE WINDS
  • ATMOSPHERIC WINDS
  • HUMIDITY > WATER VAPOR INDICATORS
Data Distribution

File Format(s):

ICARTT

Note: "Get Dataset" is a link to our recommended order method. The down arrow will show you additional options.

Spatial Information

spatial-coverage-map
Spatial Coverage: (S: 25, N: 45), (W: -130, E: -100)
Spatial Coverage Type: Horizontal Vertical
Coordinate System: Cartesian
Granule Spatial Representation: Cartesian
Locations

UNITED STATES OF AMERICA NORTHERN HEMISPHERE TROPOSPHERE STRATOSPHERE CALIFORNIA EASTERN PACIFIC OCEAN
Temporal Information

Temporal Coverage: 2017-10-19 - 2017-11-09
Platforms

Jet
NASA ER-2
NASA Earth Resources-2
GPS
Global Positioning System
HYGROMETERS
PRESSURE TRANSDUCERS
PRESSURE TRANSDUCERS
PITOT-STATIC SYSTEM
TEMPERATURE SENSORS
TEMPERATURE SENSORS
Metadata Dates

Created on 2020-04-03
Last updated on 2024-02-28